Learning from Network Device Statistics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10

AUTHORS

Rolf Stadler, Rafael Pasquini, Viktoria Fodor

ABSTRACT

We estimate end-to-end service metrics from network device statistics. Our approach is based upon statistical, supervised learning, whereby the mapping from device-level to service-level metrics is learned from observations, i.e., through monitoring the system. The approach enables end-to-end performance prediction without requiring an explicit model of the system, which is different from traditional engineering techniques that use stochastic modeling and simulation. The fact that end-to-end service metrics can be estimated from local network statistics with good accuracy in the scenarios we consider suggests that service-level properties are “encoded” in network-level statistics. We show that the set of network statistics needed for estimation can be reduced to a set of measurements along the network path between client and service backend, with little loss in estimation accuracy. The reported work is largely experimental and its results have been obtained through testbed measurements from a video streaming service and a KV store over an OpenFlow network . More... »

PAGES

672-698

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10922-017-9426-z

DOI

http://dx.doi.org/10.1007/s10922-017-9426-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091923455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swedish Institute of Computer Science", 
          "id": "https://www.grid.ac/institutes/grid.6383.e", 
          "name": [
            "ACCESS Linnaeus Center, KTH Royal Institute of Technology, Stockholm, Sweden", 
            "Swedish Institute of Computer Science (RISE SICS), Kista, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stadler", 
        "givenName": "Rolf", 
        "id": "sg:person.012246413243.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246413243.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Uberl\u00e2ndia", 
          "id": "https://www.grid.ac/institutes/grid.411284.a", 
          "name": [
            "Federal University of Uberl\u00e2ndia (FACOM/UFU), Uberl\u00e2ndia, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pasquini", 
        "givenName": "Rafael", 
        "id": "sg:person.015436726445.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015436726445.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "ACCESS Linnaeus Center, KTH Royal Institute of Technology, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fodor", 
        "givenName": "Viktoria", 
        "id": "sg:person.010175217122.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010175217122.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.adhoc.2016.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001474291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2151024.2151028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022906460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2486001.2486025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025820788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1821748.1821766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029897347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2068816.2068836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030906107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044216575", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044216575", 
          "https://doi.org/10.1007/978-1-4614-7138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044216575", 
          "https://doi.org/10.1007/978-1-4614-7138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-com.2009.0649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056820175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2365864.2151028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063161664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nem.1991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091685513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/netsoft.2017.8004198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093338564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/svm.2011.6096464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093782957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccgrid.2010.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094543874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/inm.2015.7140272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094928100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnp.2016.7785327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094934692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/inm.2015.7140318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094940293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/qomex.2010.5517692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095110629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cnsm.2015.7367349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095367625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nfv-sdn.2016.7919493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095477305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/inm.2011.5990693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095629748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mascot.2003.1240667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095706335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nsec.2014.6998241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095746090"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "We estimate end-to-end service metrics from network device statistics. Our approach is based upon statistical, supervised learning, whereby the mapping from device-level to service-level metrics is learned from observations, i.e., through monitoring the system. The approach enables end-to-end performance prediction without requiring an explicit model of the system, which is different from traditional engineering techniques that use stochastic modeling and simulation. The fact that end-to-end service metrics can be estimated from local network statistics with good accuracy in the scenarios we consider suggests that service-level properties are \u201cencoded\u201d in network-level statistics. We show that the set of network statistics needed for estimation can be reduced to a set of measurements along the network path between client and service backend, with little loss in estimation accuracy. The reported work is largely experimental and its results have been obtained through testbed measurements from a video streaming service and a KV store over an OpenFlow network .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10922-017-9426-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136514", 
        "issn": [
          "1064-7570", 
          "1573-7705"
        ], 
        "name": "Journal of Network and Systems Management", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Learning from Network Device Statistics", 
    "pagination": "672-698", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2536ace91d5d6e7568b7031298dc5cac20cbe9eff577ddc935d07139a8434b00"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10922-017-9426-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091923455"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10922-017-9426-z", 
      "https://app.dimensions.ai/details/publication/pub.1091923455"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10922-017-9426-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10922-017-9426-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10922-017-9426-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10922-017-9426-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10922-017-9426-z'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10922-017-9426-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N8152fefba89c45cea4a55d2a1e6bd7b5
4 schema:citation sg:pub.10.1007/978-1-4614-7138-7
5 sg:pub.10.1023/a:1010933404324
6 https://app.dimensions.ai/details/publication/pub.1044216575
7 https://doi.org/10.1002/nem.1991
8 https://doi.org/10.1016/j.adhoc.2016.06.011
9 https://doi.org/10.1049/iet-com.2009.0649
10 https://doi.org/10.1109/ccgrid.2010.98
11 https://doi.org/10.1109/cnsm.2015.7367349
12 https://doi.org/10.1109/icnp.2016.7785327
13 https://doi.org/10.1109/inm.2011.5990693
14 https://doi.org/10.1109/inm.2015.7140272
15 https://doi.org/10.1109/inm.2015.7140318
16 https://doi.org/10.1109/mascot.2003.1240667
17 https://doi.org/10.1109/netsoft.2017.8004198
18 https://doi.org/10.1109/nfv-sdn.2016.7919493
19 https://doi.org/10.1109/nsec.2014.6998241
20 https://doi.org/10.1109/qomex.2010.5517692
21 https://doi.org/10.1109/svm.2011.6096464
22 https://doi.org/10.1145/1821748.1821766
23 https://doi.org/10.1145/2068816.2068836
24 https://doi.org/10.1145/2151024.2151028
25 https://doi.org/10.1145/2365864.2151028
26 https://doi.org/10.1145/2486001.2486025
27 schema:datePublished 2017-10
28 schema:datePublishedReg 2017-10-01
29 schema:description We estimate end-to-end service metrics from network device statistics. Our approach is based upon statistical, supervised learning, whereby the mapping from device-level to service-level metrics is learned from observations, i.e., through monitoring the system. The approach enables end-to-end performance prediction without requiring an explicit model of the system, which is different from traditional engineering techniques that use stochastic modeling and simulation. The fact that end-to-end service metrics can be estimated from local network statistics with good accuracy in the scenarios we consider suggests that service-level properties are “encoded” in network-level statistics. We show that the set of network statistics needed for estimation can be reduced to a set of measurements along the network path between client and service backend, with little loss in estimation accuracy. The reported work is largely experimental and its results have been obtained through testbed measurements from a video streaming service and a KV store over an OpenFlow network .
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N0f10ab1cbc9140998db262a786b50019
34 Nc7ee37e1d5714ee5a98ce3c5c73682ef
35 sg:journal.1136514
36 schema:name Learning from Network Device Statistics
37 schema:pagination 672-698
38 schema:productId N3a673f14e4e84269aec7d34ca2e05cd3
39 N8dd382dc418d4dc48fca25e5020a1cff
40 Naa5be23785a6480085063a88c74851c9
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091923455
42 https://doi.org/10.1007/s10922-017-9426-z
43 schema:sdDatePublished 2019-04-10T15:14
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N30d6ee8df39f4df98eb2bd6c9c61ef37
46 schema:url https://link.springer.com/10.1007%2Fs10922-017-9426-z
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0f10ab1cbc9140998db262a786b50019 schema:issueNumber 4
51 rdf:type schema:PublicationIssue
52 N30d6ee8df39f4df98eb2bd6c9c61ef37 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N3a673f14e4e84269aec7d34ca2e05cd3 schema:name readcube_id
55 schema:value 2536ace91d5d6e7568b7031298dc5cac20cbe9eff577ddc935d07139a8434b00
56 rdf:type schema:PropertyValue
57 N7510e5dbb8a64c40817bda21efb7b0c8 rdf:first sg:person.010175217122.16
58 rdf:rest rdf:nil
59 N8152fefba89c45cea4a55d2a1e6bd7b5 rdf:first sg:person.012246413243.25
60 rdf:rest Na367b9f09a614912a57e76314e0acd4f
61 N8dd382dc418d4dc48fca25e5020a1cff schema:name dimensions_id
62 schema:value pub.1091923455
63 rdf:type schema:PropertyValue
64 Na367b9f09a614912a57e76314e0acd4f rdf:first sg:person.015436726445.09
65 rdf:rest N7510e5dbb8a64c40817bda21efb7b0c8
66 Naa5be23785a6480085063a88c74851c9 schema:name doi
67 schema:value 10.1007/s10922-017-9426-z
68 rdf:type schema:PropertyValue
69 Nc7ee37e1d5714ee5a98ce3c5c73682ef schema:volumeNumber 25
70 rdf:type schema:PublicationVolume
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
75 schema:name Statistics
76 rdf:type schema:DefinedTerm
77 sg:journal.1136514 schema:issn 1064-7570
78 1573-7705
79 schema:name Journal of Network and Systems Management
80 rdf:type schema:Periodical
81 sg:person.010175217122.16 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
82 schema:familyName Fodor
83 schema:givenName Viktoria
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010175217122.16
85 rdf:type schema:Person
86 sg:person.012246413243.25 schema:affiliation https://www.grid.ac/institutes/grid.6383.e
87 schema:familyName Stadler
88 schema:givenName Rolf
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246413243.25
90 rdf:type schema:Person
91 sg:person.015436726445.09 schema:affiliation https://www.grid.ac/institutes/grid.411284.a
92 schema:familyName Pasquini
93 schema:givenName Rafael
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015436726445.09
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4614-7138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044216575
97 https://doi.org/10.1007/978-1-4614-7138-7
98 rdf:type schema:CreativeWork
99 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
100 https://doi.org/10.1023/a:1010933404324
101 rdf:type schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1044216575 schema:CreativeWork
103 https://doi.org/10.1002/nem.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091685513
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.adhoc.2016.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001474291
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1049/iet-com.2009.0649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056820175
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/ccgrid.2010.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094543874
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/cnsm.2015.7367349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095367625
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/icnp.2016.7785327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094934692
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/inm.2011.5990693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095629748
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/inm.2015.7140272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094928100
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/inm.2015.7140318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094940293
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/mascot.2003.1240667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095706335
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/netsoft.2017.8004198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093338564
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/nfv-sdn.2016.7919493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095477305
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/nsec.2014.6998241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095746090
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/qomex.2010.5517692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095110629
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/svm.2011.6096464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093782957
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/1821748.1821766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029897347
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/2068816.2068836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030906107
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/2151024.2151028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022906460
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1145/2365864.2151028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063161664
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/2486001.2486025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025820788
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.411284.a schema:alternateName Federal University of Uberlândia
144 schema:name Federal University of Uberlândia (FACOM/UFU), Uberlândia, Brazil
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.5037.1 schema:alternateName Royal Institute of Technology
147 schema:name ACCESS Linnaeus Center, KTH Royal Institute of Technology, Stockholm, Sweden
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.6383.e schema:alternateName Swedish Institute of Computer Science
150 schema:name ACCESS Linnaeus Center, KTH Royal Institute of Technology, Stockholm, Sweden
151 Swedish Institute of Computer Science (RISE SICS), Kista, Sweden
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...