Visualization of the Rolling Contact Fatigue Cracks in Rail Tracks with a Magnetooptical Sensor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-07-16

AUTHORS

A. Chotzoglou, M. Pissas, A. D. Zervaki, G. N. Haidemenopoulos, T. Pissas

ABSTRACT

The rolling contact fatigue cracks (RCF), produced at the surface of the rail tracks, can be detected using a magnetooptical (MO) sensor. Rail tracks are carbon steels with pearlite microstructure. This microstructure has a lamellar texture composed of alternating layers of ferrite and cementite. Both phases are soft ferromagnetic materials at room temperature. If an external magnetic field is applied on the surface of a rail track, the reduced magnetic permeability causes a magnetic leakage field above the cracks. When the external magnetic field is removed, in most cases, a residual stray magnetic field remains above the cracks. When a MO sensor is placed on the surface of the rail track, the sudden change of the stray remanent magnetic field near a crack, yields a significant rotation of the polarization plane of the reflected light, resulting in high MO contrast, exactly above the cracks. Using a polished surface and a cross-section from the head of the rail track, we succeeded in visualizing the RCF cracks in the laboratory. The RCF cracks can also be detected on the surface of the rail track, in field measurements, using a portable commercial polarized light microscope equipped with a MO sensor. Finally, we use computer vision methods, to automatically detect the RCF cracks, using video recorded by displacing the portable microscopy with the MO sensor, on the surface of the rail tracks. We tested an unsupervised automatic crack detection algorithm, which exploits the tubular contrast of the RCF cracks to pinpoint the pixels that correspond to them. More... »

PAGES

68

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10921-019-0606-5

DOI

http://dx.doi.org/10.1007/s10921-019-0606-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1118044403


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos 15310 Aghia Paraskevi, Athens, Greece", 
          "id": "http://www.grid.ac/institutes/grid.6083.d", 
          "name": [
            "Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos 15310 Aghia Paraskevi, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chotzoglou", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos 15310 Aghia Paraskevi, Athens, Greece", 
          "id": "http://www.grid.ac/institutes/grid.6083.d", 
          "name": [
            "Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos 15310 Aghia Paraskevi, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pissas", 
        "givenName": "M.", 
        "id": "sg:person.016561101016.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561101016.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Engineering, Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece", 
          "id": "http://www.grid.ac/institutes/grid.410558.d", 
          "name": [
            "School of Engineering, Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zervaki", 
        "givenName": "A. D.", 
        "id": "sg:person.07420163560.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates", 
          "id": "http://www.grid.ac/institutes/grid.440568.b", 
          "name": [
            "School of Engineering, Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece", 
            "Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haidemenopoulos", 
        "givenName": "G. N.", 
        "id": "sg:person.015521222033.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521222033.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome/EPSRC Center for Interventional and Surgical Sciences, University College London, Greater London, UK", 
          "id": "http://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Wellcome/EPSRC Center for Interventional and Surgical Sciences, University College London, Greater London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pissas", 
        "givenName": "T.", 
        "id": "sg:person.012475603741.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475603741.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4419-0054-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038957318", 
          "https://doi.org/10.1007/978-1-4419-0054-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37172-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012596805", 
          "https://doi.org/10.1007/978-3-642-37172-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88693-8_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027244709", 
          "https://doi.org/10.1007/978-3-540-88693-8_27"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-07-16", 
    "datePublishedReg": "2019-07-16", 
    "description": "The rolling contact fatigue cracks (RCF), produced at the surface of the rail tracks, can be detected using a magnetooptical (MO) sensor. Rail tracks are carbon steels with pearlite microstructure. This microstructure has a lamellar texture composed of alternating layers of ferrite and cementite. Both phases are soft ferromagnetic materials at room temperature. If an external magnetic field is applied on the surface of a rail track, the reduced magnetic permeability causes a magnetic leakage field above the cracks. When the external magnetic field is removed, in most cases, a residual stray magnetic field remains above the cracks. When a MO sensor is placed on the surface of the rail track, the sudden change of the stray remanent magnetic field near a crack, yields a significant rotation of the polarization plane of the reflected light, resulting in high MO contrast, exactly above the cracks. Using a polished surface and a cross-section from the head of the rail track, we succeeded in visualizing the RCF cracks in the laboratory. The RCF cracks can also be detected on the surface of the rail track, in field measurements, using a portable commercial polarized light microscope equipped with a MO sensor. Finally, we use computer vision methods, to automatically detect the RCF cracks, using video recorded by displacing the portable microscopy with the MO sensor, on the surface of the rail tracks. We tested an unsupervised automatic crack detection algorithm, which exploits the tubular contrast of the RCF cracks to pinpoint the pixels that correspond to them.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10921-019-0606-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136450", 
        "issn": [
          "0195-9298", 
          "1573-4862"
        ], 
        "name": "Journal of Nondestructive Evaluation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "contact fatigue cracks", 
      "RCF cracks", 
      "MO sensor", 
      "rail track", 
      "fatigue cracks", 
      "Rolling Contact Fatigue Cracks", 
      "automatic crack detection algorithm", 
      "magnetic leakage field", 
      "soft ferromagnetic materials", 
      "external magnetic field", 
      "layers of ferrite", 
      "crack detection algorithm", 
      "magnetic field", 
      "magnetooptical sensors", 
      "pearlite microstructure", 
      "carbon steel", 
      "stray magnetic field", 
      "cracks", 
      "leakage field", 
      "polished surface", 
      "magnetic permeability", 
      "ferromagnetic materials", 
      "field measurements", 
      "remanent magnetic field", 
      "sensors", 
      "microstructure", 
      "room temperature", 
      "portable microscopy", 
      "surface", 
      "sudden change", 
      "steel", 
      "lamellar texture", 
      "cementite", 
      "vision methods", 
      "track", 
      "detection algorithm", 
      "ferrite", 
      "field", 
      "layer", 
      "significant rotation", 
      "microscope", 
      "temperature", 
      "materials", 
      "computer vision methods", 
      "permeability", 
      "polarization plane", 
      "microscopy", 
      "texture", 
      "measurements", 
      "phase", 
      "plane", 
      "pixels", 
      "method", 
      "algorithm", 
      "rotation", 
      "laboratory", 
      "visualization", 
      "most cases", 
      "light microscope", 
      "light", 
      "head", 
      "cases", 
      "changes", 
      "contrast", 
      "video"
    ], 
    "name": "Visualization of the Rolling Contact Fatigue Cracks in Rail Tracks with a Magnetooptical Sensor", 
    "pagination": "68", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1118044403"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10921-019-0606-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10921-019-0606-5", 
      "https://app.dimensions.ai/details/publication/pub.1118044403"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_823.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10921-019-0606-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10921-019-0606-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10921-019-0606-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10921-019-0606-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10921-019-0606-5'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      92 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10921-019-0606-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nbd4b35517e054bcaa33565dd2ddabf45
4 schema:citation sg:pub.10.1007/978-1-4419-0054-8
5 sg:pub.10.1007/978-3-540-88693-8_27
6 sg:pub.10.1007/978-3-642-37172-1
7 schema:datePublished 2019-07-16
8 schema:datePublishedReg 2019-07-16
9 schema:description The rolling contact fatigue cracks (RCF), produced at the surface of the rail tracks, can be detected using a magnetooptical (MO) sensor. Rail tracks are carbon steels with pearlite microstructure. This microstructure has a lamellar texture composed of alternating layers of ferrite and cementite. Both phases are soft ferromagnetic materials at room temperature. If an external magnetic field is applied on the surface of a rail track, the reduced magnetic permeability causes a magnetic leakage field above the cracks. When the external magnetic field is removed, in most cases, a residual stray magnetic field remains above the cracks. When a MO sensor is placed on the surface of the rail track, the sudden change of the stray remanent magnetic field near a crack, yields a significant rotation of the polarization plane of the reflected light, resulting in high MO contrast, exactly above the cracks. Using a polished surface and a cross-section from the head of the rail track, we succeeded in visualizing the RCF cracks in the laboratory. The RCF cracks can also be detected on the surface of the rail track, in field measurements, using a portable commercial polarized light microscope equipped with a MO sensor. Finally, we use computer vision methods, to automatically detect the RCF cracks, using video recorded by displacing the portable microscopy with the MO sensor, on the surface of the rail tracks. We tested an unsupervised automatic crack detection algorithm, which exploits the tubular contrast of the RCF cracks to pinpoint the pixels that correspond to them.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N63f3a230a99c4011a18fbad72bdb17c6
13 N88a50a532e904a0095e3b2cf97d5e562
14 sg:journal.1136450
15 schema:keywords MO sensor
16 RCF cracks
17 Rolling Contact Fatigue Cracks
18 algorithm
19 automatic crack detection algorithm
20 carbon steel
21 cases
22 cementite
23 changes
24 computer vision methods
25 contact fatigue cracks
26 contrast
27 crack detection algorithm
28 cracks
29 detection algorithm
30 external magnetic field
31 fatigue cracks
32 ferrite
33 ferromagnetic materials
34 field
35 field measurements
36 head
37 laboratory
38 lamellar texture
39 layer
40 layers of ferrite
41 leakage field
42 light
43 light microscope
44 magnetic field
45 magnetic leakage field
46 magnetic permeability
47 magnetooptical sensors
48 materials
49 measurements
50 method
51 microscope
52 microscopy
53 microstructure
54 most cases
55 pearlite microstructure
56 permeability
57 phase
58 pixels
59 plane
60 polarization plane
61 polished surface
62 portable microscopy
63 rail track
64 remanent magnetic field
65 room temperature
66 rotation
67 sensors
68 significant rotation
69 soft ferromagnetic materials
70 steel
71 stray magnetic field
72 sudden change
73 surface
74 temperature
75 texture
76 track
77 video
78 vision methods
79 visualization
80 schema:name Visualization of the Rolling Contact Fatigue Cracks in Rail Tracks with a Magnetooptical Sensor
81 schema:pagination 68
82 schema:productId N67ca2a7869504217b8410c410c00f822
83 Nf1f51fbdba1b4ea0a9bf181eec454f7b
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118044403
85 https://doi.org/10.1007/s10921-019-0606-5
86 schema:sdDatePublished 2022-11-24T21:06
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Ncaacd7aa35d442af9ee56f5b7ddff02f
89 schema:url https://doi.org/10.1007/s10921-019-0606-5
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N14ea5e23c12146c9ae484bb4edeae0d9 schema:affiliation grid-institutes:grid.6083.d
94 schema:familyName Chotzoglou
95 schema:givenName A.
96 rdf:type schema:Person
97 N1a63f22450b14edeab039f95cac9bc54 rdf:first sg:person.016561101016.97
98 rdf:rest Ne64e3605c92647e9943541077e64d5df
99 N54b41297d5c54acd9f6fb6a80ff53c57 rdf:first sg:person.015521222033.93
100 rdf:rest Nb17a963f68fd451ea35db45c4d27a00c
101 N63f3a230a99c4011a18fbad72bdb17c6 schema:issueNumber 3
102 rdf:type schema:PublicationIssue
103 N67ca2a7869504217b8410c410c00f822 schema:name dimensions_id
104 schema:value pub.1118044403
105 rdf:type schema:PropertyValue
106 N88a50a532e904a0095e3b2cf97d5e562 schema:volumeNumber 38
107 rdf:type schema:PublicationVolume
108 Nb17a963f68fd451ea35db45c4d27a00c rdf:first sg:person.012475603741.46
109 rdf:rest rdf:nil
110 Nbd4b35517e054bcaa33565dd2ddabf45 rdf:first N14ea5e23c12146c9ae484bb4edeae0d9
111 rdf:rest N1a63f22450b14edeab039f95cac9bc54
112 Ncaacd7aa35d442af9ee56f5b7ddff02f schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Ne64e3605c92647e9943541077e64d5df rdf:first sg:person.07420163560.19
115 rdf:rest N54b41297d5c54acd9f6fb6a80ff53c57
116 Nf1f51fbdba1b4ea0a9bf181eec454f7b schema:name doi
117 schema:value 10.1007/s10921-019-0606-5
118 rdf:type schema:PropertyValue
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
123 schema:name Materials Engineering
124 rdf:type schema:DefinedTerm
125 sg:journal.1136450 schema:issn 0195-9298
126 1573-4862
127 schema:name Journal of Nondestructive Evaluation
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.012475603741.46 schema:affiliation grid-institutes:grid.83440.3b
131 schema:familyName Pissas
132 schema:givenName T.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475603741.46
134 rdf:type schema:Person
135 sg:person.015521222033.93 schema:affiliation grid-institutes:grid.440568.b
136 schema:familyName Haidemenopoulos
137 schema:givenName G. N.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521222033.93
139 rdf:type schema:Person
140 sg:person.016561101016.97 schema:affiliation grid-institutes:grid.6083.d
141 schema:familyName Pissas
142 schema:givenName M.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561101016.97
144 rdf:type schema:Person
145 sg:person.07420163560.19 schema:affiliation grid-institutes:grid.410558.d
146 schema:familyName Zervaki
147 schema:givenName A. D.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19
149 rdf:type schema:Person
150 sg:pub.10.1007/978-1-4419-0054-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038957318
151 https://doi.org/10.1007/978-1-4419-0054-8
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/978-3-540-88693-8_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027244709
154 https://doi.org/10.1007/978-3-540-88693-8_27
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/978-3-642-37172-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012596805
157 https://doi.org/10.1007/978-3-642-37172-1
158 rdf:type schema:CreativeWork
159 grid-institutes:grid.410558.d schema:alternateName School of Engineering, Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
160 schema:name School of Engineering, Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
161 rdf:type schema:Organization
162 grid-institutes:grid.440568.b schema:alternateName Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
163 schema:name Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
164 School of Engineering, Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
165 rdf:type schema:Organization
166 grid-institutes:grid.6083.d schema:alternateName Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos 15310 Aghia Paraskevi, Athens, Greece
167 schema:name Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos 15310 Aghia Paraskevi, Athens, Greece
168 rdf:type schema:Organization
169 grid-institutes:grid.83440.3b schema:alternateName Wellcome/EPSRC Center for Interventional and Surgical Sciences, University College London, Greater London, UK
170 schema:name Wellcome/EPSRC Center for Interventional and Surgical Sciences, University College London, Greater London, UK
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...