A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Beiqun Zhao, Ruth S. Waterman, Richard D. Urman, Rodney A. Gabriel

ABSTRACT

Robot-assisted surgery (RAS) requires a large capital investment by healthcare organizations. The cost of a robotic unit is fixed, so institutions must maximize use of each unit by utilizing all available operating room block time. One way to increase utilization is to accurately predict case durations. In this study, we sought to use machine learning to develop an accurate predictive model for RAS case duration. We analyzed a random sample of robotic cases at our institution from January 2014 to June 2017. We compared the machine learning models to the baseline model, which is the scheduled case duration (determined by previous case duration averages and surgeon adjustments). Specifically, we used: 1) multivariable linear regression, 2) ridge regression, 3) lasso regression, 4) random forest, 5) boosted regression tree, and 6) neural network. We found that all machine learning models decreased the average root-mean-squared error (RMSE) as compared to the baseline model. The average RMSE was lowest with the boosted regression tree (80.2 min, 95% CI 74.0-86.4), which was significantly lower than the baseline model (100.4 min, 95% CI 90.5-110.3). Using boosted regression tree, we can increase the number of accurately booked cases from 148 to 219 (34.9% to 51.7%, p < 0.001). This study shows that using various machine learning approaches can improve the accuracy of RAS case length predictions, which will increase utilization of this limited resource. Further work is needed to operationalize these findings. More... »

PAGES

32

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10916-018-1151-y

DOI

http://dx.doi.org/10.1007/s10916-018-1151-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111159326

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30612192


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Surgery, University of California, San Diego, 9300 Campus Point Drive, #7220, 92037, La Jolla, CA, USA", 
            "Department of Medicine, Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Beiqun", 
        "id": "sg:person.013122216552.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013122216552.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waterman", 
        "givenName": "Ruth S.", 
        "id": "sg:person.01333450261.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333450261.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women\u2019s Hospital, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Urman", 
        "givenName": "Richard D.", 
        "id": "sg:person.0603521216.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603521216.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Medicine, Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA", 
            "Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gabriel", 
        "givenName": "Rodney A.", 
        "id": "sg:person.01233354775.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233354775.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-2044.2006.04719.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001296840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/ane.0b013e3181b5de07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001629962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/ane.0b013e3181b5de07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001629962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/ane.0b013e3181b5de07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001629962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200005000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002746762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200005000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002746762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jss.2015.10.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005787414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/ane.0b013e31829772e9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006669113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/ane.0b013e31829772e9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006669113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aco.0000162840.02087.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006798269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aco.0000162840.02087.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006798269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aco.0000162840.02087.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006798269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aco.0000162840.02087.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006798269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-016-4954-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009833968", 
          "https://doi.org/10.1007/s00464-016-4954-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-199612000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013018875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-199612000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013018875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclinane.2010.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014051271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamcollsurg.2011.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016390716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/ane.0b013e318291d388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023425462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/ane.0b013e318291d388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023425462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1377/hlthaff.2013.0453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035678284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2015.12.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036055681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp1006602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040877192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0952-8180(99)00110-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042126158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamcollsurg.2012.12.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043088006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbs024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048671243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000539-199907000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060125868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078672277", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.arth.2017.01.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083699172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpedsurg.2017.03.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084091636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2017.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090904008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2017.14585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099653569"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Robot-assisted surgery (RAS) requires a large capital investment by healthcare organizations. The cost of a robotic unit is fixed, so institutions must maximize use of each unit by utilizing all available operating room block time. One way to increase utilization is to accurately predict case durations. In this study, we sought to use machine learning to develop an accurate predictive model for RAS case duration. We analyzed a random sample of robotic cases at our institution from January 2014 to June 2017. We compared the machine learning models to the baseline model, which is the scheduled case duration (determined by previous case duration averages and surgeon adjustments). Specifically, we used: 1) multivariable linear regression, 2) ridge regression, 3) lasso regression, 4) random forest, 5) boosted regression tree, and 6) neural network. We found that all machine learning models decreased the average root-mean-squared error (RMSE) as compared to the baseline model. The average RMSE was lowest with the boosted regression tree (80.2\u00a0min, 95% CI 74.0-86.4), which was significantly lower than the baseline model (100.4\u00a0min, 95% CI 90.5-110.3). Using boosted regression tree, we can increase the number of accurately booked cases from 148 to 219 (34.9% to 51.7%, p\u2009<\u20090.001). This study shows that using various machine learning approaches can improve the accuracy of RAS case length predictions, which will increase utilization of this limited resource. Further work is needed to operationalize these findings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10916-018-1151-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2681202", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1088158", 
        "issn": [
          "0148-5598", 
          "1573-689X"
        ], 
        "name": "Journal of Medical Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery", 
    "pagination": "32", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6fb06ab0b681f76106833069dabf147b82babeae2b032762b5004876fdefd63d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30612192"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7806056"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10916-018-1151-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111159326"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10916-018-1151-y", 
      "https://app.dimensions.ai/details/publication/pub.1111159326"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000312_0000000312/records_1281_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10916-018-1151-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10916-018-1151-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10916-018-1151-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10916-018-1151-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10916-018-1151-y'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10916-018-1151-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne1fbf1fea16a4d17955738048ce0336d
4 schema:citation sg:pub.10.1007/s00464-016-4954-2
5 https://app.dimensions.ai/details/publication/pub.1078672277
6 https://doi.org/10.1001/jama.2017.14585
7 https://doi.org/10.1016/j.arth.2017.01.056
8 https://doi.org/10.1016/j.jacc.2015.12.063
9 https://doi.org/10.1016/j.jamcollsurg.2011.02.009
10 https://doi.org/10.1016/j.jamcollsurg.2012.12.046
11 https://doi.org/10.1016/j.jclinane.2010.02.003
12 https://doi.org/10.1016/j.jpedsurg.2017.03.035
13 https://doi.org/10.1016/j.jss.2015.10.043
14 https://doi.org/10.1016/j.media.2017.07.005
15 https://doi.org/10.1016/s0952-8180(99)00110-5
16 https://doi.org/10.1056/nejmp1006602
17 https://doi.org/10.1093/bib/bbs024
18 https://doi.org/10.1097/00000539-199907000-00003
19 https://doi.org/10.1097/00000542-199612000-00003
20 https://doi.org/10.1097/00000542-200005000-00036
21 https://doi.org/10.1097/01.aco.0000162840.02087.15
22 https://doi.org/10.1111/j.1365-2044.2006.04719.x
23 https://doi.org/10.1213/ane.0b013e3181b5de07
24 https://doi.org/10.1213/ane.0b013e318291d388
25 https://doi.org/10.1213/ane.0b013e31829772e9
26 https://doi.org/10.1377/hlthaff.2013.0453
27 schema:datePublished 2019-02
28 schema:datePublishedReg 2019-02-01
29 schema:description Robot-assisted surgery (RAS) requires a large capital investment by healthcare organizations. The cost of a robotic unit is fixed, so institutions must maximize use of each unit by utilizing all available operating room block time. One way to increase utilization is to accurately predict case durations. In this study, we sought to use machine learning to develop an accurate predictive model for RAS case duration. We analyzed a random sample of robotic cases at our institution from January 2014 to June 2017. We compared the machine learning models to the baseline model, which is the scheduled case duration (determined by previous case duration averages and surgeon adjustments). Specifically, we used: 1) multivariable linear regression, 2) ridge regression, 3) lasso regression, 4) random forest, 5) boosted regression tree, and 6) neural network. We found that all machine learning models decreased the average root-mean-squared error (RMSE) as compared to the baseline model. The average RMSE was lowest with the boosted regression tree (80.2 min, 95% CI 74.0-86.4), which was significantly lower than the baseline model (100.4 min, 95% CI 90.5-110.3). Using boosted regression tree, we can increase the number of accurately booked cases from 148 to 219 (34.9% to 51.7%, p < 0.001). This study shows that using various machine learning approaches can improve the accuracy of RAS case length predictions, which will increase utilization of this limited resource. Further work is needed to operationalize these findings.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N595a88155f5a4c8ca429e657202e1a02
34 Nd9a555412c4e439e9f7beecf8457ab64
35 sg:journal.1088158
36 schema:name A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery
37 schema:pagination 32
38 schema:productId N37324ba5c9654135b3a2e876f76f55a7
39 N4673e7603ec44b8f8b80aaea13f78754
40 N813560cfe3ae40249098ec10cc443be3
41 N868d2a10f9eb4d9da0727ec769cf681d
42 N86903fe1dbc94bafb8a12375fa67b169
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111159326
44 https://doi.org/10.1007/s10916-018-1151-y
45 schema:sdDatePublished 2019-04-11T08:35
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N15af59afbe0046c8b0c11fa4717ee770
48 schema:url https://link.springer.com/10.1007%2Fs10916-018-1151-y
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N01b4e72bbd6f410e80f1a70662e2e2ea rdf:first sg:person.01333450261.23
53 rdf:rest N53f4bae16e8e4092b119d7f6fadb80d4
54 N15af59afbe0046c8b0c11fa4717ee770 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N37324ba5c9654135b3a2e876f76f55a7 schema:name nlm_unique_id
57 schema:value 7806056
58 rdf:type schema:PropertyValue
59 N4673e7603ec44b8f8b80aaea13f78754 schema:name dimensions_id
60 schema:value pub.1111159326
61 rdf:type schema:PropertyValue
62 N53f4bae16e8e4092b119d7f6fadb80d4 rdf:first sg:person.0603521216.58
63 rdf:rest N83ca3a85960843f3aae8239ad9e2721c
64 N595a88155f5a4c8ca429e657202e1a02 schema:volumeNumber 43
65 rdf:type schema:PublicationVolume
66 N813560cfe3ae40249098ec10cc443be3 schema:name readcube_id
67 schema:value 6fb06ab0b681f76106833069dabf147b82babeae2b032762b5004876fdefd63d
68 rdf:type schema:PropertyValue
69 N83ca3a85960843f3aae8239ad9e2721c rdf:first sg:person.01233354775.15
70 rdf:rest rdf:nil
71 N868d2a10f9eb4d9da0727ec769cf681d schema:name pubmed_id
72 schema:value 30612192
73 rdf:type schema:PropertyValue
74 N86903fe1dbc94bafb8a12375fa67b169 schema:name doi
75 schema:value 10.1007/s10916-018-1151-y
76 rdf:type schema:PropertyValue
77 Nd9a555412c4e439e9f7beecf8457ab64 schema:issueNumber 2
78 rdf:type schema:PublicationIssue
79 Ne1fbf1fea16a4d17955738048ce0336d rdf:first sg:person.013122216552.79
80 rdf:rest N01b4e72bbd6f410e80f1a70662e2e2ea
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:grant.2681202 http://pending.schema.org/fundedItem sg:pub.10.1007/s10916-018-1151-y
88 rdf:type schema:MonetaryGrant
89 sg:journal.1088158 schema:issn 0148-5598
90 1573-689X
91 schema:name Journal of Medical Systems
92 rdf:type schema:Periodical
93 sg:person.01233354775.15 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
94 schema:familyName Gabriel
95 schema:givenName Rodney A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233354775.15
97 rdf:type schema:Person
98 sg:person.013122216552.79 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
99 schema:familyName Zhao
100 schema:givenName Beiqun
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013122216552.79
102 rdf:type schema:Person
103 sg:person.01333450261.23 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
104 schema:familyName Waterman
105 schema:givenName Ruth S.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333450261.23
107 rdf:type schema:Person
108 sg:person.0603521216.58 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
109 schema:familyName Urman
110 schema:givenName Richard D.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603521216.58
112 rdf:type schema:Person
113 sg:pub.10.1007/s00464-016-4954-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009833968
114 https://doi.org/10.1007/s00464-016-4954-2
115 rdf:type schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1078672277 schema:CreativeWork
117 https://doi.org/10.1001/jama.2017.14585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099653569
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.arth.2017.01.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083699172
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jacc.2015.12.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036055681
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jamcollsurg.2011.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016390716
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jamcollsurg.2012.12.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043088006
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jclinane.2010.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014051271
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jpedsurg.2017.03.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084091636
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jss.2015.10.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005787414
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.media.2017.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090904008
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0952-8180(99)00110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042126158
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1056/nejmp1006602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040877192
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/bib/bbs024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048671243
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1097/00000539-199907000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060125868
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1097/00000542-199612000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013018875
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1097/00000542-200005000-00036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002746762
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1097/01.aco.0000162840.02087.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006798269
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/j.1365-2044.2006.04719.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001296840
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1213/ane.0b013e3181b5de07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001629962
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1213/ane.0b013e318291d388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023425462
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1213/ane.0b013e31829772e9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006669113
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1377/hlthaff.2013.0453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035678284
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
160 schema:name Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
161 Department of Medicine, Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA
162 Department of Surgery, University of California, San Diego, 9300 Campus Point Drive, #7220, 92037, La Jolla, CA, USA
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
165 schema:name Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...