Data Mining Techniques for Assisting the Diagnosis of Pressure Ulcer Development in Surgical Patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08

AUTHORS

Chao-Ton Su, Pa-Chun Wang, Yan-Cheng Chen, Li-Fei Chen

ABSTRACT

Pressure ulcer is a serious problem during patient care processes. The high risk factors in the development of pressure ulcer remain unclear during long surgery. Moreover, past preventive policies are hard to implement in a busy operation room. The objective of this study is to use data mining techniques to construct the prediction model for pressure ulcers. Four data mining techniques, namely, Mahalanobis Taguchi System (MTS), Support Vector Machines (SVMs), decision tree (DT), and logistic regression (LR), are used to select the important attributes from the data to predict the incidence of pressure ulcers. Measurements of sensitivity, specificity, F(1), and g-means were used to compare the performance of four classifiers on the pressure ulcer data set. The results show that data mining techniques obtain good results in predicting the incidence of pressure ulcer. We can conclude that data mining techniques can help identify the important factors and provide a feasible model to predict pressure ulcer development. More... »

PAGES

2387-2399

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10916-011-9706-1

DOI

http://dx.doi.org/10.1007/s10916-011-9706-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011766871

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21503743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Trees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postoperative Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pressure Ulcer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Room 820, Engineering Building I, 101, Sec. 2, Kuang Fu Rd., 30013, Hsinchu, Taiwan, Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Chao-Ton", 
        "id": "sg:person.016137101441.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cathay General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413535.5", 
          "name": [
            "School of Medicine, Fu-Jen Catholic University, No.510, Zhongzheng Rd., Xinzhung Dist., 24205, New Taipei City, Taiwan, Republic of China", 
            "Department of Otolaryngology, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei, Taiwan, Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Pa-Chun", 
        "id": "sg:person.0620141324.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620141324.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Room 708, Engineering Building I, 101, Sec. 2, Kuang Fu Rd., 30013, Hsinchu, Taiwan, Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yan-Cheng", 
        "id": "sg:person.0741147111.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741147111.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fu Jen Catholic University", 
          "id": "https://www.grid.ac/institutes/grid.256105.5", 
          "name": [
            "Graduate Institute of Business Administration, Fu-Jen Catholic University, No.510, Zhongzheng Rd., Xinzhung Dist., 24205, New Taipei City, Taiwan, Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li-Fei", 
        "id": "sg:person.015651305004.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651305004.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-28804-x_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010511252", 
          "https://doi.org/10.1007/3-540-28804-x_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/intqhc/13.5.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014183397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/intqhc/mzn009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016398678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1656274.1656278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028526411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2702.2002.00621.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031086093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/apnr.2002.34145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031490114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2702.1999.00254.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034852758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2702.1999.00254.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034852758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/qshc.2005.015362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037631556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/qshc.2005.015362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037631556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnr.2005.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042817757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3835(01)00508-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043515853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.2048-7940.1987.tb00541.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045095286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/qshc.2007.023341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046799211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/qshc.2007.023341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046799211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/intqhc/mzi088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048500278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012487302797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573168", 
          "https://doi.org/10.1023/a:1012487302797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006199-198707000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050529247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006199-198707000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050529247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2005.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.190623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074603015", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077353980", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079993283", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082860630", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083168593", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470172247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470172247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661684"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-08", 
    "datePublishedReg": "2012-08-01", 
    "description": "Pressure ulcer is a serious problem during patient care processes. The high risk factors in the development of pressure ulcer remain unclear during long surgery. Moreover, past preventive policies are hard to implement in a busy operation room. The objective of this study is to use data mining techniques to construct the prediction model for pressure ulcers. Four data mining techniques, namely, Mahalanobis Taguchi System (MTS), Support Vector Machines (SVMs), decision tree (DT), and logistic regression (LR), are used to select the important attributes from the data to predict the incidence of pressure ulcers. Measurements of sensitivity, specificity, F(1), and g-means were used to compare the performance of four classifiers on the pressure ulcer data set. The results show that data mining techniques obtain good results in predicting the incidence of pressure ulcer. We can conclude that data mining techniques can help identify the important factors and provide a feasible model to predict pressure ulcer development.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10916-011-9706-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1088158", 
        "issn": [
          "0148-5598", 
          "1573-689X"
        ], 
        "name": "Journal of Medical Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Data Mining Techniques for Assisting the Diagnosis of Pressure Ulcer Development in Surgical Patients", 
    "pagination": "2387-2399", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "381061ecd558675dae255bbe14c737c82ef63fc16217414bdfad7ba1c1fe3647"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21503743"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7806056"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10916-011-9706-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011766871"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10916-011-9706-1", 
      "https://app.dimensions.ai/details/publication/pub.1011766871"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10916-011-9706-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10916-011-9706-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10916-011-9706-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10916-011-9706-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10916-011-9706-1'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      66 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10916-011-9706-1 schema:about N07b34a3ab8394c9d97202a7d8ea1e7e0
2 N49641f2a4f7e43e6a52eed2b30446826
3 N531135867e4e4c82b5dea8a512feb9a2
4 N584f37f6c11d4cd5bc8e683136c730bb
5 N5892959ddf23484b990b81c45ccb91ba
6 N5b7bc5bf15bd4a29ad689ca764d4c06b
7 N6674a7600170463282ffa4c2733a4856
8 N8d62f8c6325844a198630d7d6ebc8986
9 N9fcf0e5add5146be801ec5bff642c105
10 Na6ff5b895905471da486b5bc0d47bd54
11 Na78a8d53ab904f83a6a32de8bc34f4ee
12 Nb57890fee17a4c07b99f2118b6ed2b8b
13 Nc0c3b3dad5454e4c865bf2f7cd993499
14 anzsrc-for:08
15 anzsrc-for:0801
16 schema:author N726a4d20c74f47d4b8817d642585e01c
17 schema:citation sg:pub.10.1007/3-540-28804-x_4
18 sg:pub.10.1007/978-1-4757-2440-0
19 sg:pub.10.1023/a:1012487302797
20 https://app.dimensions.ai/details/publication/pub.1074603015
21 https://app.dimensions.ai/details/publication/pub.1077353980
22 https://app.dimensions.ai/details/publication/pub.1079993283
23 https://app.dimensions.ai/details/publication/pub.1082860630
24 https://app.dimensions.ai/details/publication/pub.1083168593
25 https://doi.org/10.1002/9780470172247
26 https://doi.org/10.1002/j.2048-7940.1987.tb00541.x
27 https://doi.org/10.1016/j.apnr.2005.01.001
28 https://doi.org/10.1016/s0304-3835(01)00508-0
29 https://doi.org/10.1046/j.1365-2702.1999.00254.x
30 https://doi.org/10.1046/j.1365-2702.2002.00621.x
31 https://doi.org/10.1053/apnr.2002.34145
32 https://doi.org/10.1093/intqhc/13.5.399
33 https://doi.org/10.1093/intqhc/mzi088
34 https://doi.org/10.1093/intqhc/mzn009
35 https://doi.org/10.1097/00006199-198707000-00002
36 https://doi.org/10.1109/tkde.2005.95
37 https://doi.org/10.1109/tkde.2007.190623
38 https://doi.org/10.1136/qshc.2005.015362
39 https://doi.org/10.1136/qshc.2007.023341
40 https://doi.org/10.1145/1656274.1656278
41 schema:datePublished 2012-08
42 schema:datePublishedReg 2012-08-01
43 schema:description Pressure ulcer is a serious problem during patient care processes. The high risk factors in the development of pressure ulcer remain unclear during long surgery. Moreover, past preventive policies are hard to implement in a busy operation room. The objective of this study is to use data mining techniques to construct the prediction model for pressure ulcers. Four data mining techniques, namely, Mahalanobis Taguchi System (MTS), Support Vector Machines (SVMs), decision tree (DT), and logistic regression (LR), are used to select the important attributes from the data to predict the incidence of pressure ulcers. Measurements of sensitivity, specificity, F(1), and g-means were used to compare the performance of four classifiers on the pressure ulcer data set. The results show that data mining techniques obtain good results in predicting the incidence of pressure ulcer. We can conclude that data mining techniques can help identify the important factors and provide a feasible model to predict pressure ulcer development.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N7ef55e7cacf64d749dad0af406309e71
48 Nd31cc1b2a3af49b1b4c86d1568fb1b6f
49 sg:journal.1088158
50 schema:name Data Mining Techniques for Assisting the Diagnosis of Pressure Ulcer Development in Surgical Patients
51 schema:pagination 2387-2399
52 schema:productId N329f125d1553423685c7dc82bfbf5c02
53 Nd5a9082d396447e09c1f92be046b74ec
54 Ndab69e28d0af440e9d78a4fb467fb67b
55 Nef6932d95a0e4797987a210188be9ce4
56 Nff532c11ecd942e685b9abea98df0e5d
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011766871
58 https://doi.org/10.1007/s10916-011-9706-1
59 schema:sdDatePublished 2019-04-11T02:00
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N8bf116b5878947a8add5eaa1f669843d
62 schema:url http://link.springer.com/10.1007%2Fs10916-011-9706-1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N052386b7e6d44dbc96701c47d630bbf9 rdf:first sg:person.0620141324.98
67 rdf:rest Nbb90d79f5e334c18abad1158d401036e
68 N07b34a3ab8394c9d97202a7d8ea1e7e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Male
70 rdf:type schema:DefinedTerm
71 N329f125d1553423685c7dc82bfbf5c02 schema:name dimensions_id
72 schema:value pub.1011766871
73 rdf:type schema:PropertyValue
74 N49641f2a4f7e43e6a52eed2b30446826 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Pressure Ulcer
76 rdf:type schema:DefinedTerm
77 N531135867e4e4c82b5dea8a512feb9a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Support Vector Machine
79 rdf:type schema:DefinedTerm
80 N584f37f6c11d4cd5bc8e683136c730bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Humans
82 rdf:type schema:DefinedTerm
83 N5892959ddf23484b990b81c45ccb91ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Decision Trees
85 rdf:type schema:DefinedTerm
86 N5b7bc5bf15bd4a29ad689ca764d4c06b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Diagnosis, Computer-Assisted
88 rdf:type schema:DefinedTerm
89 N645cea0c2c6547358d7ebc160438482b rdf:first sg:person.015651305004.49
90 rdf:rest rdf:nil
91 N6674a7600170463282ffa4c2733a4856 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Data Mining
93 rdf:type schema:DefinedTerm
94 N726a4d20c74f47d4b8817d642585e01c rdf:first sg:person.016137101441.02
95 rdf:rest N052386b7e6d44dbc96701c47d630bbf9
96 N7ef55e7cacf64d749dad0af406309e71 schema:issueNumber 4
97 rdf:type schema:PublicationIssue
98 N8bf116b5878947a8add5eaa1f669843d schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N8d62f8c6325844a198630d7d6ebc8986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Logistic Models
102 rdf:type schema:DefinedTerm
103 N9fcf0e5add5146be801ec5bff642c105 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Aged
105 rdf:type schema:DefinedTerm
106 Na6ff5b895905471da486b5bc0d47bd54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Postoperative Care
108 rdf:type schema:DefinedTerm
109 Na78a8d53ab904f83a6a32de8bc34f4ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Female
111 rdf:type schema:DefinedTerm
112 Nb57890fee17a4c07b99f2118b6ed2b8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Middle Aged
114 rdf:type schema:DefinedTerm
115 Nbb90d79f5e334c18abad1158d401036e rdf:first sg:person.0741147111.70
116 rdf:rest N645cea0c2c6547358d7ebc160438482b
117 Nc0c3b3dad5454e4c865bf2f7cd993499 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Models, Theoretical
119 rdf:type schema:DefinedTerm
120 Nd31cc1b2a3af49b1b4c86d1568fb1b6f schema:volumeNumber 36
121 rdf:type schema:PublicationVolume
122 Nd5a9082d396447e09c1f92be046b74ec schema:name pubmed_id
123 schema:value 21503743
124 rdf:type schema:PropertyValue
125 Ndab69e28d0af440e9d78a4fb467fb67b schema:name nlm_unique_id
126 schema:value 7806056
127 rdf:type schema:PropertyValue
128 Nef6932d95a0e4797987a210188be9ce4 schema:name doi
129 schema:value 10.1007/s10916-011-9706-1
130 rdf:type schema:PropertyValue
131 Nff532c11ecd942e685b9abea98df0e5d schema:name readcube_id
132 schema:value 381061ecd558675dae255bbe14c737c82ef63fc16217414bdfad7ba1c1fe3647
133 rdf:type schema:PropertyValue
134 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information and Computing Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
138 schema:name Artificial Intelligence and Image Processing
139 rdf:type schema:DefinedTerm
140 sg:journal.1088158 schema:issn 0148-5598
141 1573-689X
142 schema:name Journal of Medical Systems
143 rdf:type schema:Periodical
144 sg:person.015651305004.49 schema:affiliation https://www.grid.ac/institutes/grid.256105.5
145 schema:familyName Chen
146 schema:givenName Li-Fei
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651305004.49
148 rdf:type schema:Person
149 sg:person.016137101441.02 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
150 schema:familyName Su
151 schema:givenName Chao-Ton
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02
153 rdf:type schema:Person
154 sg:person.0620141324.98 schema:affiliation https://www.grid.ac/institutes/grid.413535.5
155 schema:familyName Wang
156 schema:givenName Pa-Chun
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620141324.98
158 rdf:type schema:Person
159 sg:person.0741147111.70 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
160 schema:familyName Chen
161 schema:givenName Yan-Cheng
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741147111.70
163 rdf:type schema:Person
164 sg:pub.10.1007/3-540-28804-x_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010511252
165 https://doi.org/10.1007/3-540-28804-x_4
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
168 https://doi.org/10.1007/978-1-4757-2440-0
169 rdf:type schema:CreativeWork
170 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
171 https://doi.org/10.1023/a:1012487302797
172 rdf:type schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1074603015 schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1077353980 schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1079993283 schema:CreativeWork
176 https://app.dimensions.ai/details/publication/pub.1082860630 schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1083168593 schema:CreativeWork
178 https://doi.org/10.1002/9780470172247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661684
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/j.2048-7940.1987.tb00541.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045095286
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.apnr.2005.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042817757
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0304-3835(01)00508-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043515853
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1046/j.1365-2702.1999.00254.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034852758
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1046/j.1365-2702.2002.00621.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031086093
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1053/apnr.2002.34145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031490114
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/intqhc/13.5.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014183397
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/intqhc/mzi088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048500278
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/intqhc/mzn009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016398678
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1097/00006199-198707000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050529247
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/tkde.2005.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661489
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/tkde.2007.190623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661695
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1136/qshc.2005.015362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037631556
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1136/qshc.2007.023341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046799211
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.256105.5 schema:alternateName Fu Jen Catholic University
211 schema:name Graduate Institute of Business Administration, Fu-Jen Catholic University, No.510, Zhongzheng Rd., Xinzhung Dist., 24205, New Taipei City, Taiwan, Republic of China
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
214 schema:name Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Room 708, Engineering Building I, 101, Sec. 2, Kuang Fu Rd., 30013, Hsinchu, Taiwan, Republic of China
215 Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Room 820, Engineering Building I, 101, Sec. 2, Kuang Fu Rd., 30013, Hsinchu, Taiwan, Republic of China
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.413535.5 schema:alternateName Cathay General Hospital
218 schema:name Department of Otolaryngology, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei, Taiwan, Republic of China
219 School of Medicine, Fu-Jen Catholic University, No.510, Zhongzheng Rd., Xinzhung Dist., 24205, New Taipei City, Taiwan, Republic of China
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...