Improved Approximation of Phase-Space Densities on Triangulated Domains Using Discrete Flow Mapping with p-Refinement View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-04

AUTHORS

Janis Bajars, David J. Chappell, Timo Hartmann, Gregor Tanner

ABSTRACT

We consider the approximation of the phase-space flow of a dynamical system on a triangulated surface using an approach known as Discrete Flow Mapping. Such flows are of interest throughout statistical mechanics, but the focus here is on flows arising from ray tracing approximations of linear wave equations. An orthogonal polynomial basis approximation of the phase-space density is applied in both the position and direction coordinates, in contrast with previous studies where piecewise constant functions have typically been applied for the spatial approximation. In order to improve the tractability of an orthogonal polynomial approximation in both phase-space coordinates, we propose a careful strategy for computing the propagation operator. For the favourable case of a Legendre polynomial basis we show that the integrals in the definition of the propagation operator may be evaluated analytically with respect to position and via a spectrally convergent quadrature rule for the direction coordinate. A generally applicable spectral quadrature scheme for integration with respect to both coordinates is also detailed for completeness. Finally, we provide numerical results that motivate the use of p-refinement in the orthogonal polynomial basis. More... »

PAGES

1290-1312

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10915-017-0397-8

DOI

http://dx.doi.org/10.1007/s10915-017-0397-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084027944


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Science and Technology, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK", 
          "id": "http://www.grid.ac/institutes/grid.12361.37", 
          "name": [
            "School of Science and Technology, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bajars", 
        "givenName": "Janis", 
        "id": "sg:person.011023565235.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023565235.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science and Technology, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK", 
          "id": "http://www.grid.ac/institutes/grid.12361.37", 
          "name": [
            "School of Science and Technology, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chappell", 
        "givenName": "David J.", 
        "id": "sg:person.0760337511.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760337511.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
          "id": "http://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartmann", 
        "givenName": "Timo", 
        "id": "sg:person.015006175623.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006175623.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK", 
          "id": "http://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanner", 
        "givenName": "Gregor", 
        "id": "sg:person.0743572550.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743572550.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10915-015-0157-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046289126", 
          "https://doi.org/10.1007/s10915-015-0157-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-84738-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043698255", 
          "https://doi.org/10.1007/978-3-642-84738-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-008-9198-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023571504", 
          "https://doi.org/10.1007/s10915-008-9198-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-04", 
    "datePublishedReg": "2017-03-04", 
    "description": "We consider the approximation of the phase-space flow of a dynamical system on a triangulated surface using an approach known as Discrete Flow Mapping. Such flows are of interest throughout statistical mechanics, but the focus here is on flows arising from ray tracing approximations of linear wave equations. An orthogonal polynomial basis approximation of the phase-space density is applied in both the position and direction coordinates, in contrast with previous studies where piecewise constant functions have typically been applied for the spatial approximation. In order to improve the tractability of an orthogonal polynomial approximation in both phase-space coordinates, we propose a careful strategy for computing the propagation operator. For the favourable case of a Legendre polynomial basis we show that the integrals in the definition of the propagation operator may be evaluated analytically with respect to position and via a spectrally convergent quadrature rule for the direction coordinate. A generally applicable spectral quadrature scheme for integration with respect to both coordinates is also detailed for completeness. Finally, we provide numerical results that motivate the use of p-refinement in the orthogonal polynomial basis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10915-017-0397-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3798240", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2766746", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1126163", 
        "issn": [
          "0885-7474", 
          "1573-7691"
        ], 
        "name": "Journal of Scientific Computing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "keywords": [
      "Discrete Flow Mapping", 
      "phase space density", 
      "propagation operator", 
      "polynomial basis", 
      "phase space flow", 
      "linear wave equation", 
      "orthogonal polynomial approximation", 
      "Legendre polynomial basis", 
      "convergent quadrature rule", 
      "phase space coordinates", 
      "orthogonal polynomial basis", 
      "p-refinement", 
      "statistical mechanics", 
      "dynamical systems", 
      "wave equation", 
      "basis approximation", 
      "spatial approximation", 
      "quadrature scheme", 
      "polynomial approximation", 
      "quadrature rules", 
      "triangulated domain", 
      "constant functions", 
      "approximation", 
      "such flows", 
      "direction coordinates", 
      "numerical results", 
      "coordinates", 
      "operators", 
      "equations", 
      "flow", 
      "integrals", 
      "tractability", 
      "favorable cases", 
      "mechanics", 
      "scheme", 
      "rays", 
      "density", 
      "respect", 
      "mapping", 
      "flow mapping", 
      "function", 
      "system", 
      "approach", 
      "position", 
      "direction", 
      "completeness", 
      "rules", 
      "order", 
      "basis", 
      "definition", 
      "cases", 
      "domain", 
      "results", 
      "integration", 
      "interest", 
      "surface", 
      "use", 
      "strategies", 
      "focus", 
      "previous studies", 
      "contrast", 
      "careful strategy", 
      "study"
    ], 
    "name": "Improved Approximation of Phase-Space Densities on Triangulated Domains Using Discrete Flow Mapping with p-Refinement", 
    "pagination": "1290-1312", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084027944"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10915-017-0397-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10915-017-0397-8", 
      "https://app.dimensions.ai/details/publication/pub.1084027944"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_721.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10915-017-0397-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10915-017-0397-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10915-017-0397-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10915-017-0397-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10915-017-0397-8'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      90 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10915-017-0397-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1da1a4556a6a41beb7b3c5fe90860f68
4 schema:citation sg:pub.10.1007/978-3-642-84738-7
5 sg:pub.10.1007/s10915-008-9198-4
6 sg:pub.10.1007/s10915-015-0157-6
7 schema:datePublished 2017-03-04
8 schema:datePublishedReg 2017-03-04
9 schema:description We consider the approximation of the phase-space flow of a dynamical system on a triangulated surface using an approach known as Discrete Flow Mapping. Such flows are of interest throughout statistical mechanics, but the focus here is on flows arising from ray tracing approximations of linear wave equations. An orthogonal polynomial basis approximation of the phase-space density is applied in both the position and direction coordinates, in contrast with previous studies where piecewise constant functions have typically been applied for the spatial approximation. In order to improve the tractability of an orthogonal polynomial approximation in both phase-space coordinates, we propose a careful strategy for computing the propagation operator. For the favourable case of a Legendre polynomial basis we show that the integrals in the definition of the propagation operator may be evaluated analytically with respect to position and via a spectrally convergent quadrature rule for the direction coordinate. A generally applicable spectral quadrature scheme for integration with respect to both coordinates is also detailed for completeness. Finally, we provide numerical results that motivate the use of p-refinement in the orthogonal polynomial basis.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N817ce8c89bf444ca833394f55858a706
13 Nc7885d63f80942cd8b447f48b788091e
14 sg:journal.1126163
15 schema:keywords Discrete Flow Mapping
16 Legendre polynomial basis
17 approach
18 approximation
19 basis
20 basis approximation
21 careful strategy
22 cases
23 completeness
24 constant functions
25 contrast
26 convergent quadrature rule
27 coordinates
28 definition
29 density
30 direction
31 direction coordinates
32 domain
33 dynamical systems
34 equations
35 favorable cases
36 flow
37 flow mapping
38 focus
39 function
40 integrals
41 integration
42 interest
43 linear wave equation
44 mapping
45 mechanics
46 numerical results
47 operators
48 order
49 orthogonal polynomial approximation
50 orthogonal polynomial basis
51 p-refinement
52 phase space coordinates
53 phase space density
54 phase space flow
55 polynomial approximation
56 polynomial basis
57 position
58 previous studies
59 propagation operator
60 quadrature rules
61 quadrature scheme
62 rays
63 respect
64 results
65 rules
66 scheme
67 spatial approximation
68 statistical mechanics
69 strategies
70 study
71 such flows
72 surface
73 system
74 tractability
75 triangulated domain
76 use
77 wave equation
78 schema:name Improved Approximation of Phase-Space Densities on Triangulated Domains Using Discrete Flow Mapping with p-Refinement
79 schema:pagination 1290-1312
80 schema:productId N54ed443e135c4d01a324f51f10db23f2
81 N895ae92752854f9fb13aa636d28fca07
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027944
83 https://doi.org/10.1007/s10915-017-0397-8
84 schema:sdDatePublished 2022-12-01T06:35
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N571c19e325cb4e9aab56eb831902bbfb
87 schema:url https://doi.org/10.1007/s10915-017-0397-8
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N1da1a4556a6a41beb7b3c5fe90860f68 rdf:first sg:person.011023565235.37
92 rdf:rest Nc6dcb437697e4962b9982e10d17fb891
93 N2d3a66327e014591b77f0ab1113f59d1 rdf:first sg:person.0743572550.19
94 rdf:rest rdf:nil
95 N54ed443e135c4d01a324f51f10db23f2 schema:name dimensions_id
96 schema:value pub.1084027944
97 rdf:type schema:PropertyValue
98 N571c19e325cb4e9aab56eb831902bbfb schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N817ce8c89bf444ca833394f55858a706 schema:issueNumber 3
101 rdf:type schema:PublicationIssue
102 N895ae92752854f9fb13aa636d28fca07 schema:name doi
103 schema:value 10.1007/s10915-017-0397-8
104 rdf:type schema:PropertyValue
105 Nbcb03d757f864741be96e176bb7077af rdf:first sg:person.015006175623.15
106 rdf:rest N2d3a66327e014591b77f0ab1113f59d1
107 Nc6dcb437697e4962b9982e10d17fb891 rdf:first sg:person.0760337511.27
108 rdf:rest Nbcb03d757f864741be96e176bb7077af
109 Nc7885d63f80942cd8b447f48b788091e schema:volumeNumber 72
110 rdf:type schema:PublicationVolume
111 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
112 schema:name Mathematical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
115 schema:name Pure Mathematics
116 rdf:type schema:DefinedTerm
117 sg:grant.2766746 http://pending.schema.org/fundedItem sg:pub.10.1007/s10915-017-0397-8
118 rdf:type schema:MonetaryGrant
119 sg:grant.3798240 http://pending.schema.org/fundedItem sg:pub.10.1007/s10915-017-0397-8
120 rdf:type schema:MonetaryGrant
121 sg:journal.1126163 schema:issn 0885-7474
122 1573-7691
123 schema:name Journal of Scientific Computing
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.011023565235.37 schema:affiliation grid-institutes:grid.12361.37
127 schema:familyName Bajars
128 schema:givenName Janis
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023565235.37
130 rdf:type schema:Person
131 sg:person.015006175623.15 schema:affiliation grid-institutes:grid.4563.4
132 schema:familyName Hartmann
133 schema:givenName Timo
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006175623.15
135 rdf:type schema:Person
136 sg:person.0743572550.19 schema:affiliation grid-institutes:grid.4563.4
137 schema:familyName Tanner
138 schema:givenName Gregor
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743572550.19
140 rdf:type schema:Person
141 sg:person.0760337511.27 schema:affiliation grid-institutes:grid.12361.37
142 schema:familyName Chappell
143 schema:givenName David J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760337511.27
145 rdf:type schema:Person
146 sg:pub.10.1007/978-3-642-84738-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043698255
147 https://doi.org/10.1007/978-3-642-84738-7
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s10915-008-9198-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023571504
150 https://doi.org/10.1007/s10915-008-9198-4
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10915-015-0157-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046289126
153 https://doi.org/10.1007/s10915-015-0157-6
154 rdf:type schema:CreativeWork
155 grid-institutes:grid.12361.37 schema:alternateName School of Science and Technology, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK
156 schema:name School of Science and Technology, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK
157 rdf:type schema:Organization
158 grid-institutes:grid.4563.4 schema:alternateName School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
159 schema:name School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...