Extended local convergence for some inexact methods with applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-19

AUTHORS

Ioannis K. Argyros, M. J. Legaz, Á. A. Magreñán, D. Moreno, Juan Antonio Sicilia

ABSTRACT

We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the first Fréchet-derivative of the operator involved. Earlier results involve Lipschitz-type hypotheses on higher than the first Fréchet-derivative. The applicability of these methods is extended this way and under less computational cost. Special cases and applications are provided to show that these new results can apply to solve these equations. More... »

PAGES

1508-1523

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10910-019-01004-5

DOI

http://dx.doi.org/10.1007/s10910-019-01004-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112222398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "Ioannis K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de C\u00e1diz, C\u00e1diz, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7759.c", 
          "name": [
            "Universidad de C\u00e1diz, C\u00e1diz, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legaz", 
        "givenName": "M. J.", 
        "id": "sg:person.07405731366.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405731366.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de La Rioja, Madre de Dios 53, 26004, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.119021.a", 
          "name": [
            "Universidad de La Rioja, Madre de Dios 53, 26004, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magre\u00f1\u00e1n", 
        "givenName": "\u00c1. A.", 
        "id": "sg:person.013576636334.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Internacional de La Rioja (UNIR), Av. de La Paz, 137, 26006, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Universidad Internacional de La Rioja (UNIR), Av. de La Paz, 137, 26006, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreno", 
        "givenName": "D.", 
        "id": "sg:person.0711160242.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711160242.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Internacional de La Rioja (UNIR), Av. de La Paz, 137, 26006, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Universidad Internacional de La Rioja (UNIR), Av. de La Paz, 137, 26006, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sicilia", 
        "givenName": "Juan Antonio", 
        "id": "sg:person.016663220241.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02238803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038780485", 
          "https://doi.org/10.1007/bf02238803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-017-0824-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092536960", 
          "https://doi.org/10.1007/s10910-017-0824-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-19", 
    "datePublishedReg": "2019-02-19", 
    "description": "We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the first Fr\u00e9chet-derivative of the operator involved. Earlier results involve Lipschitz-type hypotheses on higher than the first Fr\u00e9chet-derivative. The applicability of these methods is extended this way and under less computational cost. Special cases and applications are provided to show that these new results can apply to solve these equations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10910-019-01004-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026076", 
        "issn": [
          "0259-9791", 
          "1572-8897"
        ], 
        "name": "Journal of Mathematical Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "first Fr\u00e9chet derivative", 
      "Fr\u00e9chet derivative", 
      "higher convergence order", 
      "local convergence results", 
      "convergence order", 
      "Lipschitz condition", 
      "less computational cost", 
      "convergence results", 
      "normed spaces", 
      "inexact method", 
      "local convergence", 
      "unique solution", 
      "computational cost", 
      "special case", 
      "iterative procedure", 
      "new results", 
      "earlier results", 
      "equations", 
      "convergence", 
      "operators", 
      "space", 
      "applications", 
      "solution", 
      "order", 
      "applicability", 
      "results", 
      "cases", 
      "procedure", 
      "conditions", 
      "cost", 
      "way", 
      "hypothesis", 
      "method", 
      "Lipschitz-type hypotheses", 
      "Extended local convergence"
    ], 
    "name": "Extended local convergence for some inexact methods with applications", 
    "pagination": "1508-1523", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112222398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10910-019-01004-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10910-019-01004-5", 
      "https://app.dimensions.ai/details/publication/pub.1112222398"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_819.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10910-019-01004-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-019-01004-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-019-01004-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-019-01004-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-019-01004-5'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      62 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10910-019-01004-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N2ac9ca2fe51e4815b302d3f5db46584f
4 schema:citation sg:pub.10.1007/bf02238803
5 sg:pub.10.1007/s10910-017-0824-y
6 schema:datePublished 2019-02-19
7 schema:datePublishedReg 2019-02-19
8 schema:description We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the first Fréchet-derivative of the operator involved. Earlier results involve Lipschitz-type hypotheses on higher than the first Fréchet-derivative. The applicability of these methods is extended this way and under less computational cost. Special cases and applications are provided to show that these new results can apply to solve these equations.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N76ceaace72da41a2aa09e9941ed96843
13 Nc397607c137b41de8898060331bf91b0
14 sg:journal.1026076
15 schema:keywords Extended local convergence
16 Fréchet derivative
17 Lipschitz condition
18 Lipschitz-type hypotheses
19 applicability
20 applications
21 cases
22 computational cost
23 conditions
24 convergence
25 convergence order
26 convergence results
27 cost
28 earlier results
29 equations
30 first Fréchet derivative
31 higher convergence order
32 hypothesis
33 inexact method
34 iterative procedure
35 less computational cost
36 local convergence
37 local convergence results
38 method
39 new results
40 normed spaces
41 operators
42 order
43 procedure
44 results
45 solution
46 space
47 special case
48 unique solution
49 way
50 schema:name Extended local convergence for some inexact methods with applications
51 schema:pagination 1508-1523
52 schema:productId N44e9593a58d54dfd8517a734d8f14122
53 N8f93944dc4e44a81b6aedcf530307eed
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112222398
55 https://doi.org/10.1007/s10910-019-01004-5
56 schema:sdDatePublished 2021-12-01T19:44
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ncf2353cd41644878a2895f50fb60a4cf
59 schema:url https://doi.org/10.1007/s10910-019-01004-5
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N004a7b7ce00e488fbf1513e114bb19a4 rdf:first sg:person.0711160242.89
64 rdf:rest N91261ab825de4cbf817da28e0220b55d
65 N2ac9ca2fe51e4815b302d3f5db46584f rdf:first sg:person.015707547201.06
66 rdf:rest N83d5eb32d86142f5ad4e9a609c3eddc3
67 N44e9593a58d54dfd8517a734d8f14122 schema:name dimensions_id
68 schema:value pub.1112222398
69 rdf:type schema:PropertyValue
70 N76ceaace72da41a2aa09e9941ed96843 schema:issueNumber 5
71 rdf:type schema:PublicationIssue
72 N83d5eb32d86142f5ad4e9a609c3eddc3 rdf:first sg:person.07405731366.00
73 rdf:rest N95a80a5bf36c4af1b76349c08a206da0
74 N8f93944dc4e44a81b6aedcf530307eed schema:name doi
75 schema:value 10.1007/s10910-019-01004-5
76 rdf:type schema:PropertyValue
77 N91261ab825de4cbf817da28e0220b55d rdf:first sg:person.016663220241.96
78 rdf:rest rdf:nil
79 N95a80a5bf36c4af1b76349c08a206da0 rdf:first sg:person.013576636334.52
80 rdf:rest N004a7b7ce00e488fbf1513e114bb19a4
81 Nc397607c137b41de8898060331bf91b0 schema:volumeNumber 57
82 rdf:type schema:PublicationVolume
83 Ncf2353cd41644878a2895f50fb60a4cf schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
89 schema:name Statistics
90 rdf:type schema:DefinedTerm
91 sg:journal.1026076 schema:issn 0259-9791
92 1572-8897
93 schema:name Journal of Mathematical Chemistry
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.013576636334.52 schema:affiliation grid-institutes:grid.119021.a
97 schema:familyName Magreñán
98 schema:givenName Á. A.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52
100 rdf:type schema:Person
101 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
102 schema:familyName Argyros
103 schema:givenName Ioannis K.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
105 rdf:type schema:Person
106 sg:person.016663220241.96 schema:affiliation grid-institutes:grid.13825.3d
107 schema:familyName Sicilia
108 schema:givenName Juan Antonio
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96
110 rdf:type schema:Person
111 sg:person.0711160242.89 schema:affiliation grid-institutes:grid.13825.3d
112 schema:familyName Moreno
113 schema:givenName D.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711160242.89
115 rdf:type schema:Person
116 sg:person.07405731366.00 schema:affiliation grid-institutes:grid.7759.c
117 schema:familyName Legaz
118 schema:givenName M. J.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405731366.00
120 rdf:type schema:Person
121 sg:pub.10.1007/bf02238803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038780485
122 https://doi.org/10.1007/bf02238803
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10910-017-0824-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092536960
125 https://doi.org/10.1007/s10910-017-0824-y
126 rdf:type schema:CreativeWork
127 grid-institutes:grid.119021.a schema:alternateName Universidad de La Rioja, Madre de Dios 53, 26004, Logroño, La Rioja, Spain
128 schema:name Universidad de La Rioja, Madre de Dios 53, 26004, Logroño, La Rioja, Spain
129 rdf:type schema:Organization
130 grid-institutes:grid.13825.3d schema:alternateName Universidad Internacional de La Rioja (UNIR), Av. de La Paz, 137, 26006, Logroño, La Rioja, Spain
131 schema:name Universidad Internacional de La Rioja (UNIR), Av. de La Paz, 137, 26006, Logroño, La Rioja, Spain
132 rdf:type schema:Organization
133 grid-institutes:grid.253592.a schema:alternateName Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
134 schema:name Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
135 rdf:type schema:Organization
136 grid-institutes:grid.7759.c schema:alternateName Universidad de Cádiz, Cádiz, Spain
137 schema:name Universidad de Cádiz, Cádiz, Spain
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...