Ball convergence of a sixth-order Newton-like method based on means under weak conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01-24

AUTHORS

Á. A. Magreñán, I. K. Argyros, J. J. Rainer, J. A. Sicilia

ABSTRACT

We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative although only the first derivative appears in these methods. Hence, the applicability of the method is expanded. Finally, we solve the problem of the fractional conversion in the ammonia process showing the applicability of the theoretical results. More... »

PAGES

2117-2131

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10910-018-0856-y

DOI

http://dx.doi.org/10.1007/s10910-018-0856-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100590256


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magre\u00f1\u00e1n", 
        "givenName": "\u00c1. A.", 
        "id": "sg:person.013576636334.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "I. K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rainer", 
        "givenName": "J. J.", 
        "id": "sg:person.012006056341.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012006056341.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sicilia", 
        "givenName": "J. A.", 
        "id": "sg:person.016663220241.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11075-011-9519-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024284171", 
          "https://doi.org/10.1007/s11075-011-9519-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-004-2733-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039772729", 
          "https://doi.org/10.1007/s00010-004-2733-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002459911012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334328", 
          "https://doi.org/10.1007/s002459911012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10543-009-0226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329581", 
          "https://doi.org/10.1007/s10543-009-0226-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-010-9438-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007576986", 
          "https://doi.org/10.1007/s11075-010-9438-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038780485", 
          "https://doi.org/10.1007/bf02238803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-009-9302-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000709826", 
          "https://doi.org/10.1007/s11075-009-9302-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008743953", 
          "https://doi.org/10.1007/bf02241866"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-24", 
    "datePublishedReg": "2018-01-24", 
    "description": "We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative although only the first derivative appears in these methods. Hence, the applicability of the method is expanded. Finally, we solve the problem of the fractional conversion in the ammonia process showing the applicability of the theoretical results.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10910-018-0856-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026076", 
        "issn": [
          "0259-9791", 
          "1572-8897"
        ], 
        "name": "Journal of Mathematical Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "Newton-like methods", 
      "convergence order six", 
      "nonlinear equations", 
      "seventh derivative", 
      "local convergence", 
      "order six", 
      "unique solution", 
      "weak conditions", 
      "theoretical results", 
      "convergence", 
      "first derivative", 
      "equations", 
      "applicability", 
      "problem", 
      "solution", 
      "derivatives", 
      "fractional conversion", 
      "means", 
      "conditions", 
      "results", 
      "process", 
      "six", 
      "hypothesis", 
      "earlier studies", 
      "study", 
      "ammonia process", 
      "conversion", 
      "method", 
      "sixth-order Newton-like method"
    ], 
    "name": "Ball convergence of a sixth-order Newton-like method based on means under weak conditions", 
    "pagination": "2117-2131", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100590256"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10910-018-0856-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10910-018-0856-y", 
      "https://app.dimensions.ai/details/publication/pub.1100590256"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_762.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10910-018-0856-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-018-0856-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-018-0856-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-018-0856-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-018-0856-y'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      22 PREDICATES      62 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10910-018-0856-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb0d18101be1c412d85362af383e70e17
4 schema:citation sg:pub.10.1007/bf02238803
5 sg:pub.10.1007/bf02241866
6 sg:pub.10.1007/s00010-004-2733-y
7 sg:pub.10.1007/s002459911012
8 sg:pub.10.1007/s10543-009-0226-z
9 sg:pub.10.1007/s11075-009-9302-3
10 sg:pub.10.1007/s11075-010-9438-1
11 sg:pub.10.1007/s11075-011-9519-9
12 schema:datePublished 2018-01-24
13 schema:datePublishedReg 2018-01-24
14 schema:description We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative although only the first derivative appears in these methods. Hence, the applicability of the method is expanded. Finally, we solve the problem of the fractional conversion in the ammonia process showing the applicability of the theoretical results.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N314707c50024413abed1278f36b7a8ad
19 Nf21c68fa2aa540bd964d931e3d0b880d
20 sg:journal.1026076
21 schema:keywords Newton-like methods
22 ammonia process
23 applicability
24 conditions
25 convergence
26 convergence order six
27 conversion
28 derivatives
29 earlier studies
30 equations
31 first derivative
32 fractional conversion
33 hypothesis
34 local convergence
35 means
36 method
37 nonlinear equations
38 order six
39 problem
40 process
41 results
42 seventh derivative
43 six
44 sixth-order Newton-like method
45 solution
46 study
47 theoretical results
48 unique solution
49 weak conditions
50 schema:name Ball convergence of a sixth-order Newton-like method based on means under weak conditions
51 schema:pagination 2117-2131
52 schema:productId N6325a84639e8446dad8f2c65999d743d
53 Nd5b8d5a640dd4850b147054d9db1d440
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100590256
55 https://doi.org/10.1007/s10910-018-0856-y
56 schema:sdDatePublished 2021-11-01T18:33
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N9c915943340e49119212a62b03ce9bc4
59 schema:url https://doi.org/10.1007/s10910-018-0856-y
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N07d29912986e42dba7434fb924908a5e rdf:first sg:person.016663220241.96
64 rdf:rest rdf:nil
65 N314707c50024413abed1278f36b7a8ad schema:volumeNumber 56
66 rdf:type schema:PublicationVolume
67 N486fd56c10b54ac5aef6a6fe53d3336d rdf:first sg:person.015707547201.06
68 rdf:rest Nd7916981521247a281cfd4208983c0c3
69 N6325a84639e8446dad8f2c65999d743d schema:name doi
70 schema:value 10.1007/s10910-018-0856-y
71 rdf:type schema:PropertyValue
72 N9c915943340e49119212a62b03ce9bc4 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nb0d18101be1c412d85362af383e70e17 rdf:first sg:person.013576636334.52
75 rdf:rest N486fd56c10b54ac5aef6a6fe53d3336d
76 Nd5b8d5a640dd4850b147054d9db1d440 schema:name dimensions_id
77 schema:value pub.1100590256
78 rdf:type schema:PropertyValue
79 Nd7916981521247a281cfd4208983c0c3 rdf:first sg:person.012006056341.44
80 rdf:rest N07d29912986e42dba7434fb924908a5e
81 Nf21c68fa2aa540bd964d931e3d0b880d schema:issueNumber 7
82 rdf:type schema:PublicationIssue
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
87 schema:name Statistics
88 rdf:type schema:DefinedTerm
89 sg:journal.1026076 schema:issn 0259-9791
90 1572-8897
91 schema:name Journal of Mathematical Chemistry
92 schema:publisher Springer Nature
93 rdf:type schema:Periodical
94 sg:person.012006056341.44 schema:affiliation grid-institutes:grid.13825.3d
95 schema:familyName Rainer
96 schema:givenName J. J.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012006056341.44
98 rdf:type schema:Person
99 sg:person.013576636334.52 schema:affiliation grid-institutes:grid.13825.3d
100 schema:familyName Magreñán
101 schema:givenName Á. A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52
103 rdf:type schema:Person
104 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
105 schema:familyName Argyros
106 schema:givenName I. K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
108 rdf:type schema:Person
109 sg:person.016663220241.96 schema:affiliation grid-institutes:grid.13825.3d
110 schema:familyName Sicilia
111 schema:givenName J. A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96
113 rdf:type schema:Person
114 sg:pub.10.1007/bf02238803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038780485
115 https://doi.org/10.1007/bf02238803
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02241866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008743953
118 https://doi.org/10.1007/bf02241866
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00010-004-2733-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039772729
121 https://doi.org/10.1007/s00010-004-2733-y
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s002459911012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049334328
124 https://doi.org/10.1007/s002459911012
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10543-009-0226-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329581
127 https://doi.org/10.1007/s10543-009-0226-z
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11075-009-9302-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000709826
130 https://doi.org/10.1007/s11075-009-9302-3
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11075-010-9438-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007576986
133 https://doi.org/10.1007/s11075-010-9438-1
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11075-011-9519-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024284171
136 https://doi.org/10.1007/s11075-011-9519-9
137 rdf:type schema:CreativeWork
138 grid-institutes:grid.13825.3d schema:alternateName Escuela de Ingeniería, Universidad Internacional de La Rioja, Avenida de La Paz 137, 26002, Logroño, La Rioja, Spain
139 schema:name Escuela de Ingeniería, Universidad Internacional de La Rioja, Avenida de La Paz 137, 26002, Logroño, La Rioja, Spain
140 rdf:type schema:Organization
141 grid-institutes:grid.253592.a schema:alternateName Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
142 schema:name Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...