New improved convergence analysis for Newton-like methods with applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-18

AUTHORS

Á. Alberto Magreñán, Ioannis K. Argyros, Juan Antonio Sicilia

ABSTRACT

We present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include, under the same computational cost as previous studies, a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Numerical studies including a chemical application are also provided in this study. More... »

PAGES

1505-1520

References to SciGraph publications

  • 1995-09. Application of interval Newton's method to chemical engineering problems in RELIABLE COMPUTING
  • 1970-02. Infinite dimensional multipoint methods and the solution of two point boundary value problems in NUMERISCHE MATHEMATIK
  • 1982. On the convergence of a class of newton-like methods in ITERATIVE SOLUTION OF NONLINEAR SYSTEMS OF EQUATIONS
  • 1969-09. A multipoint method of third order in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1981-09. An updated version of the Kantorovich theorem for Newton's method in COMPUTING
  • 1978-09. Untere Fehlerschranken für Regula-falsi-Verfahren in PERIODICA MATHEMATICA HUNGARICA
  • 2015-07-11. Improved convergence analysis for Newton-like methods in NUMERICAL ALGORITHMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3

    DOI

    http://dx.doi.org/10.1007/s10910-016-0727-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001105750


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain", 
              "id": "http://www.grid.ac/institutes/grid.13825.3d", 
              "name": [
                "Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Magre\u00f1\u00e1n", 
            "givenName": "\u00c1. Alberto", 
            "id": "sg:person.013576636334.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics Sciences Lawton, Cameron University, 73505, Lawton, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.253592.a", 
              "name": [
                "Department of Mathematics Sciences Lawton, Cameron University, 73505, Lawton, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Argyros", 
            "givenName": "Ioannis K.", 
            "id": "sg:person.015707547201.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain", 
              "id": "http://www.grid.ac/institutes/grid.13825.3d", 
              "name": [
                "Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sicilia", 
            "givenName": "Juan Antonio", 
            "id": "sg:person.016663220241.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02018090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022698268", 
              "https://doi.org/10.1007/bf02018090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11075-015-0025-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044335800", 
              "https://doi.org/10.1007/s11075-015-0025-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00930576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005743478", 
              "https://doi.org/10.1007/bf00930576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02163335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025663098", 
              "https://doi.org/10.1007/bf02163335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0069378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042124801", 
              "https://doi.org/10.1007/bfb0069378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02385253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014900317", 
              "https://doi.org/10.1007/bf02385253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02237981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009351270", 
              "https://doi.org/10.1007/bf02237981"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01-18", 
        "datePublishedReg": "2017-01-18", 
        "description": "We present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include, under the same computational cost as previous studies, a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Numerical studies including a chemical application are also provided in this study.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10910-016-0727-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1026076", 
            "issn": [
              "0259-9791", 
              "1572-8897"
            ], 
            "name": "Journal of Mathematical Chemistry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "Newton-like methods", 
          "convergence analysis", 
          "same computational cost", 
          "improved convergence analysis", 
          "semilocal convergence analysis", 
          "Banach space setting", 
          "computational cost", 
          "precise convergence analysis", 
          "new semilocal convergence analysis", 
          "Lipschitz constants", 
          "convergence domain", 
          "space setting", 
          "numerical study", 
          "main goal", 
          "chemical applications", 
          "applications", 
          "applicability", 
          "approach", 
          "constants", 
          "analysis", 
          "cost", 
          "cases", 
          "advantages", 
          "domain", 
          "earlier studies", 
          "goal", 
          "study", 
          "setting", 
          "previous studies", 
          "method"
        ], 
        "name": "New improved convergence analysis for Newton-like methods with applications", 
        "pagination": "1505-1520", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001105750"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10910-016-0727-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10910-016-0727-3", 
          "https://app.dimensions.ai/details/publication/pub.1001105750"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_744.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10910-016-0727-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      22 PREDICATES      62 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10910-016-0727-3 schema:about anzsrc-for:01
    2 anzsrc-for:03
    3 schema:author N9964f1da118546aa9701aebdd944dda6
    4 schema:citation sg:pub.10.1007/bf00930576
    5 sg:pub.10.1007/bf02018090
    6 sg:pub.10.1007/bf02163335
    7 sg:pub.10.1007/bf02237981
    8 sg:pub.10.1007/bf02385253
    9 sg:pub.10.1007/bfb0069378
    10 sg:pub.10.1007/s11075-015-0025-3
    11 schema:datePublished 2017-01-18
    12 schema:datePublishedReg 2017-01-18
    13 schema:description We present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include, under the same computational cost as previous studies, a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Numerical studies including a chemical application are also provided in this study.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N616c06e1e5694429826302692215c1a6
    18 Ne61400bf8dc74e89a4f1b568ba50c8f1
    19 sg:journal.1026076
    20 schema:keywords Banach space setting
    21 Lipschitz constants
    22 Newton-like methods
    23 advantages
    24 analysis
    25 applicability
    26 applications
    27 approach
    28 cases
    29 chemical applications
    30 computational cost
    31 constants
    32 convergence analysis
    33 convergence domain
    34 cost
    35 domain
    36 earlier studies
    37 goal
    38 improved convergence analysis
    39 main goal
    40 method
    41 new semilocal convergence analysis
    42 numerical study
    43 precise convergence analysis
    44 previous studies
    45 same computational cost
    46 semilocal convergence analysis
    47 setting
    48 space setting
    49 study
    50 schema:name New improved convergence analysis for Newton-like methods with applications
    51 schema:pagination 1505-1520
    52 schema:productId N86c14833508c4b1898221db355abb6b9
    53 Ne477cfb812634bf395353686cd97c1e7
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001105750
    55 https://doi.org/10.1007/s10910-016-0727-3
    56 schema:sdDatePublished 2022-05-20T07:32
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Ne86e812032154a6a983173970cd98655
    59 schema:url https://doi.org/10.1007/s10910-016-0727-3
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N616c06e1e5694429826302692215c1a6 schema:issueNumber 7
    64 rdf:type schema:PublicationIssue
    65 N86c14833508c4b1898221db355abb6b9 schema:name doi
    66 schema:value 10.1007/s10910-016-0727-3
    67 rdf:type schema:PropertyValue
    68 N91f027f9b7f54defabd641d9687f9960 rdf:first sg:person.016663220241.96
    69 rdf:rest rdf:nil
    70 N9964f1da118546aa9701aebdd944dda6 rdf:first sg:person.013576636334.52
    71 rdf:rest Ne47d1b6027ab4da2bc748325e727e4d9
    72 Ne477cfb812634bf395353686cd97c1e7 schema:name dimensions_id
    73 schema:value pub.1001105750
    74 rdf:type schema:PropertyValue
    75 Ne47d1b6027ab4da2bc748325e727e4d9 rdf:first sg:person.015707547201.06
    76 rdf:rest N91f027f9b7f54defabd641d9687f9960
    77 Ne61400bf8dc74e89a4f1b568ba50c8f1 schema:volumeNumber 55
    78 rdf:type schema:PublicationVolume
    79 Ne86e812032154a6a983173970cd98655 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Chemical Sciences
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1026076 schema:issn 0259-9791
    88 1572-8897
    89 schema:name Journal of Mathematical Chemistry
    90 schema:publisher Springer Nature
    91 rdf:type schema:Periodical
    92 sg:person.013576636334.52 schema:affiliation grid-institutes:grid.13825.3d
    93 schema:familyName Magreñán
    94 schema:givenName Á. Alberto
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52
    96 rdf:type schema:Person
    97 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
    98 schema:familyName Argyros
    99 schema:givenName Ioannis K.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
    101 rdf:type schema:Person
    102 sg:person.016663220241.96 schema:affiliation grid-institutes:grid.13825.3d
    103 schema:familyName Sicilia
    104 schema:givenName Juan Antonio
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96
    106 rdf:type schema:Person
    107 sg:pub.10.1007/bf00930576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005743478
    108 https://doi.org/10.1007/bf00930576
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf02018090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022698268
    111 https://doi.org/10.1007/bf02018090
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf02163335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025663098
    114 https://doi.org/10.1007/bf02163335
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf02237981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009351270
    117 https://doi.org/10.1007/bf02237981
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bf02385253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014900317
    120 https://doi.org/10.1007/bf02385253
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bfb0069378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042124801
    123 https://doi.org/10.1007/bfb0069378
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s11075-015-0025-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044335800
    126 https://doi.org/10.1007/s11075-015-0025-3
    127 rdf:type schema:CreativeWork
    128 grid-institutes:grid.13825.3d schema:alternateName Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logroño, La Rioja, Spain
    129 schema:name Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logroño, La Rioja, Spain
    130 rdf:type schema:Organization
    131 grid-institutes:grid.253592.a schema:alternateName Department of Mathematics Sciences Lawton, Cameron University, 73505, Lawton, OK, USA
    132 schema:name Department of Mathematics Sciences Lawton, Cameron University, 73505, Lawton, OK, USA
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...