Ontology type: schema:ScholarlyArticle
2017-01-18
AUTHORSÁ. Alberto Magreñán, Ioannis K. Argyros, Juan Antonio Sicilia
ABSTRACTWe present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include, under the same computational cost as previous studies, a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Numerical studies including a chemical application are also provided in this study. More... »
PAGES1505-1520
http://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3
DOIhttp://dx.doi.org/10.1007/s10910-016-0727-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1001105750
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Magre\u00f1\u00e1n",
"givenName": "\u00c1. Alberto",
"id": "sg:person.013576636334.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics Sciences Lawton, Cameron University, 73505, Lawton, OK, USA",
"id": "http://www.grid.ac/institutes/grid.253592.a",
"name": [
"Department of Mathematics Sciences Lawton, Cameron University, 73505, Lawton, OK, USA"
],
"type": "Organization"
},
"familyName": "Argyros",
"givenName": "Ioannis K.",
"id": "sg:person.015707547201.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Universidad Internacional de La Rioja (UNIR), Avenida de La Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Sicilia",
"givenName": "Juan Antonio",
"id": "sg:person.016663220241.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02018090",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022698268",
"https://doi.org/10.1007/bf02018090"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-015-0025-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044335800",
"https://doi.org/10.1007/s11075-015-0025-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00930576",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005743478",
"https://doi.org/10.1007/bf00930576"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02163335",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025663098",
"https://doi.org/10.1007/bf02163335"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0069378",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042124801",
"https://doi.org/10.1007/bfb0069378"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02385253",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014900317",
"https://doi.org/10.1007/bf02385253"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02237981",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009351270",
"https://doi.org/10.1007/bf02237981"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-01-18",
"datePublishedReg": "2017-01-18",
"description": "We present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include, under the same computational cost as previous studies, a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Numerical studies including a chemical application are also provided in this study.",
"genre": "article",
"id": "sg:pub.10.1007/s10910-016-0727-3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1026076",
"issn": [
"0259-9791",
"1572-8897"
],
"name": "Journal of Mathematical Chemistry",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "55"
}
],
"keywords": [
"Newton-like methods",
"convergence analysis",
"same computational cost",
"improved convergence analysis",
"semilocal convergence analysis",
"Banach space setting",
"computational cost",
"precise convergence analysis",
"new semilocal convergence analysis",
"Lipschitz constants",
"convergence domain",
"space setting",
"numerical study",
"main goal",
"chemical applications",
"applications",
"applicability",
"approach",
"constants",
"analysis",
"cost",
"cases",
"advantages",
"domain",
"earlier studies",
"goal",
"study",
"setting",
"previous studies",
"method"
],
"name": "New improved convergence analysis for Newton-like methods with applications",
"pagination": "1505-1520",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1001105750"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10910-016-0727-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10910-016-0727-3",
"https://app.dimensions.ai/details/publication/pub.1001105750"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_744.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10910-016-0727-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0727-3'
This table displays all metadata directly associated to this object as RDF triples.
133 TRIPLES
22 PREDICATES
62 URIs
47 LITERALS
6 BLANK NODES