Ontology type: schema:ScholarlyArticle
2017-01-13
AUTHORSI. K. Argyros, Á. A. Magreñán, L. Orcos, J. A. Sicilia
ABSTRACTWe present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fréchet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639–653, 2010, Appl Math Lett 25(12):2209–2217, 2012, Appl Math Comput 219(24):11341–11347, 2013, Appl Math Comput 219(15):7954–7963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fréchet derivative and divided differences of order one. Numerical examples are also provided in this work. More... »
PAGES1427-1442
http://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8
DOIhttp://dx.doi.org/10.1007/s10910-016-0722-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033274147
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA",
"id": "http://www.grid.ac/institutes/grid.253592.a",
"name": [
"Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
],
"type": "Organization"
},
"familyName": "Argyros",
"givenName": "I. K.",
"id": "sg:person.015707547201.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Magre\u00f1\u00e1n",
"givenName": "\u00c1. A.",
"id": "sg:person.013576636334.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Orcos",
"givenName": "L.",
"id": "sg:person.016113540473.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016113540473.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Sicilia",
"givenName": "J. A.",
"id": "sg:person.016663220241.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02241866",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008743953",
"https://doi.org/10.1007/bf02241866"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02238803",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038780485",
"https://doi.org/10.1007/bf02238803"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-004-0508-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003757784",
"https://doi.org/10.1007/s10107-004-0508-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002459911012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049334328",
"https://doi.org/10.1007/s002459911012"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-01-13",
"datePublishedReg": "2017-01-13",
"description": "We present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fr\u00e9chet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639\u2013653, 2010, Appl Math Lett 25(12):2209\u20132217, 2012, Appl Math Comput 219(24):11341\u201311347, 2013, Appl Math Comput 219(15):7954\u20137963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fr\u00e9chet derivative and divided differences of order one. Numerical examples are also provided in this work.",
"genre": "article",
"id": "sg:pub.10.1007/s10910-016-0722-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1026076",
"issn": [
"0259-9791",
"1572-8897"
],
"name": "Journal of Mathematical Chemistry",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "55"
}
],
"keywords": [
"two-step Newton",
"Fr\u00e9chet derivative",
"first Fr\u00e9chet derivative",
"local convergence analysis",
"second Fr\u00e9chet derivative",
"Banach space setting",
"nonlinear equations",
"convergence analysis",
"space setting",
"local convergence",
"divided differences",
"numerical examples",
"like method",
"order one",
"Amat et al",
"Newton",
"equations",
"et al",
"convergence",
"solution",
"derivatives",
"applications",
"one",
"order",
"al",
"work",
"analysis",
"earlier studies",
"center",
"hypothesis",
"setting",
"study",
"differences",
"method",
"example"
],
"name": "Local convergence of a relaxed two-step Newton like method with applications",
"pagination": "1427-1442",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033274147"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10910-016-0722-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10910-016-0722-8",
"https://app.dimensions.ai/details/publication/pub.1033274147"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_752.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10910-016-0722-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8'
This table displays all metadata directly associated to this object as RDF triples.
133 TRIPLES
22 PREDICATES
64 URIs
52 LITERALS
6 BLANK NODES