Local convergence of a relaxed two-step Newton like method with applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-13

AUTHORS

I. K. Argyros, Á. A. Magreñán, L. Orcos, J. A. Sicilia

ABSTRACT

We present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fréchet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639–653, 2010, Appl Math Lett 25(12):2209–2217, 2012, Appl Math Comput 219(24):11341–11347, 2013, Appl Math Comput 219(15):7954–7963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fréchet derivative and divided differences of order one. Numerical examples are also provided in this work. More... »

PAGES

1427-1442

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8

DOI

http://dx.doi.org/10.1007/s10910-016-0722-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033274147


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "I. K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magre\u00f1\u00e1n", 
        "givenName": "\u00c1. A.", 
        "id": "sg:person.013576636334.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orcos", 
        "givenName": "L.", 
        "id": "sg:person.016113540473.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016113540473.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sicilia", 
        "givenName": "J. A.", 
        "id": "sg:person.016663220241.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02241866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008743953", 
          "https://doi.org/10.1007/bf02241866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038780485", 
          "https://doi.org/10.1007/bf02238803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-004-0508-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003757784", 
          "https://doi.org/10.1007/s10107-004-0508-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002459911012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334328", 
          "https://doi.org/10.1007/s002459911012"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-13", 
    "datePublishedReg": "2017-01-13", 
    "description": "We present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fr\u00e9chet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639\u2013653, 2010, Appl Math Lett 25(12):2209\u20132217, 2012, Appl Math Comput 219(24):11341\u201311347, 2013, Appl Math Comput 219(15):7954\u20137963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fr\u00e9chet derivative and divided differences of order one. Numerical examples are also provided in this work.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10910-016-0722-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026076", 
        "issn": [
          "0259-9791", 
          "1572-8897"
        ], 
        "name": "Journal of Mathematical Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "two-step Newton", 
      "Fr\u00e9chet derivative", 
      "first Fr\u00e9chet derivative", 
      "local convergence analysis", 
      "second Fr\u00e9chet derivative", 
      "Banach space setting", 
      "nonlinear equations", 
      "convergence analysis", 
      "space setting", 
      "local convergence", 
      "divided differences", 
      "numerical examples", 
      "like method", 
      "order one", 
      "Amat et al", 
      "Newton", 
      "equations", 
      "et al", 
      "convergence", 
      "solution", 
      "derivatives", 
      "applications", 
      "one", 
      "order", 
      "al", 
      "work", 
      "analysis", 
      "earlier studies", 
      "center", 
      "hypothesis", 
      "setting", 
      "study", 
      "differences", 
      "method", 
      "example"
    ], 
    "name": "Local convergence of a relaxed two-step Newton like method with applications", 
    "pagination": "1427-1442", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033274147"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10910-016-0722-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10910-016-0722-8", 
      "https://app.dimensions.ai/details/publication/pub.1033274147"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_752.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10910-016-0722-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0722-8'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      64 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10910-016-0722-8 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nf663e524155048f0ba57fdc564f4420f
4 schema:citation sg:pub.10.1007/bf02238803
5 sg:pub.10.1007/bf02241866
6 sg:pub.10.1007/s002459911012
7 sg:pub.10.1007/s10107-004-0508-9
8 schema:datePublished 2017-01-13
9 schema:datePublishedReg 2017-01-13
10 schema:description We present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fréchet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639–653, 2010, Appl Math Lett 25(12):2209–2217, 2012, Appl Math Comput 219(24):11341–11347, 2013, Appl Math Comput 219(15):7954–7963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fréchet derivative and divided differences of order one. Numerical examples are also provided in this work.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N2db04a78a3bb420ebaf85376ea61ccea
15 Ncd5ab2d734e647ee99f43e3cb00d23e4
16 sg:journal.1026076
17 schema:keywords Amat et al
18 Banach space setting
19 Fréchet derivative
20 Newton
21 al
22 analysis
23 applications
24 center
25 convergence
26 convergence analysis
27 derivatives
28 differences
29 divided differences
30 earlier studies
31 equations
32 et al
33 example
34 first Fréchet derivative
35 hypothesis
36 like method
37 local convergence
38 local convergence analysis
39 method
40 nonlinear equations
41 numerical examples
42 one
43 order
44 order one
45 second Fréchet derivative
46 setting
47 solution
48 space setting
49 study
50 two-step Newton
51 work
52 schema:name Local convergence of a relaxed two-step Newton like method with applications
53 schema:pagination 1427-1442
54 schema:productId N12172000a4484759af1b967b9c136c67
55 Na487db7a034c4e4e8261f741424b1549
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033274147
57 https://doi.org/10.1007/s10910-016-0722-8
58 schema:sdDatePublished 2022-05-10T10:21
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nd2d9c14ae44742b2986acb44cca907d9
61 schema:url https://doi.org/10.1007/s10910-016-0722-8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N12172000a4484759af1b967b9c136c67 schema:name dimensions_id
66 schema:value pub.1033274147
67 rdf:type schema:PropertyValue
68 N2db04a78a3bb420ebaf85376ea61ccea schema:volumeNumber 55
69 rdf:type schema:PublicationVolume
70 N899e80cb5c774f9e85d2c15e0d392e39 rdf:first sg:person.013576636334.52
71 rdf:rest Nbe93a189af424b89a66f857ff7981776
72 N8db0909d40954df6bb497c35de6d6a54 rdf:first sg:person.016663220241.96
73 rdf:rest rdf:nil
74 Na487db7a034c4e4e8261f741424b1549 schema:name doi
75 schema:value 10.1007/s10910-016-0722-8
76 rdf:type schema:PropertyValue
77 Nbe93a189af424b89a66f857ff7981776 rdf:first sg:person.016113540473.51
78 rdf:rest N8db0909d40954df6bb497c35de6d6a54
79 Ncd5ab2d734e647ee99f43e3cb00d23e4 schema:issueNumber 7
80 rdf:type schema:PublicationIssue
81 Nd2d9c14ae44742b2986acb44cca907d9 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nf663e524155048f0ba57fdc564f4420f rdf:first sg:person.015707547201.06
84 rdf:rest N899e80cb5c774f9e85d2c15e0d392e39
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
89 schema:name Numerical and Computational Mathematics
90 rdf:type schema:DefinedTerm
91 sg:journal.1026076 schema:issn 0259-9791
92 1572-8897
93 schema:name Journal of Mathematical Chemistry
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.013576636334.52 schema:affiliation grid-institutes:grid.13825.3d
97 schema:familyName Magreñán
98 schema:givenName Á. A.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52
100 rdf:type schema:Person
101 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
102 schema:familyName Argyros
103 schema:givenName I. K.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
105 rdf:type schema:Person
106 sg:person.016113540473.51 schema:affiliation grid-institutes:grid.13825.3d
107 schema:familyName Orcos
108 schema:givenName L.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016113540473.51
110 rdf:type schema:Person
111 sg:person.016663220241.96 schema:affiliation grid-institutes:grid.13825.3d
112 schema:familyName Sicilia
113 schema:givenName J. A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016663220241.96
115 rdf:type schema:Person
116 sg:pub.10.1007/bf02238803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038780485
117 https://doi.org/10.1007/bf02238803
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf02241866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008743953
120 https://doi.org/10.1007/bf02241866
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s002459911012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049334328
123 https://doi.org/10.1007/s002459911012
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10107-004-0508-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003757784
126 https://doi.org/10.1007/s10107-004-0508-9
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.13825.3d schema:alternateName Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logroño, La Rioja, Spain
129 schema:name Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, 26002, Logroño, La Rioja, Spain
130 rdf:type schema:Organization
131 grid-institutes:grid.253592.a schema:alternateName Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
132 schema:name Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...