Ontology type: schema:ScholarlyArticle
2016-02-12
AUTHORSIoannis K. Argyros, Á. Alberto Magreñán, Lara Orcos
ABSTRACTWe present a local convergence analysis of a derivative free fourth order method with one parameter based on rational interpolation in order to approximate a locally unique root of a function. The method is optimal in the sense of Traub. In earlier studies such as Steffensen (Scand Actuar J 16(1):64–72, 1933) and Zafer et al. (Sci World J, 2015. doi:10.1155/2015/934260) the convergence was based on hypotheses on the third derivative or even higher. We extend the applicability of theses methods using only the first derivative. Moreover, we provide computable radii and error bounds based on Lipschitz constants. Furthermore, the dynamics of this method are studied in order to find the best choice of the parameter in terms of convergence. An application is also presented in this study. More... »
PAGES1404-1416
http://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z
DOIhttp://dx.doi.org/10.1007/s10910-016-0605-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030943405
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA",
"id": "http://www.grid.ac/institutes/grid.253592.a",
"name": [
"Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA"
],
"type": "Organization"
},
"familyName": "Argyros",
"givenName": "Ioannis K.",
"id": "sg:person.015707547201.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Magre\u00f1\u00e1n",
"givenName": "\u00c1. Alberto",
"id": "sg:person.013576636334.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Orcos",
"givenName": "Lara",
"id": "sg:person.016113540473.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016113540473.51"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02241866",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008743953",
"https://doi.org/10.1007/bf02241866"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002459911012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049334328",
"https://doi.org/10.1007/s002459911012"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00010-004-2733-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039772729",
"https://doi.org/10.1007/s00010-004-2733-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02238803",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038780485",
"https://doi.org/10.1007/bf02238803"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-009-9302-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000709826",
"https://doi.org/10.1007/s11075-009-9302-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-011-9519-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024284171",
"https://doi.org/10.1007/s11075-011-9519-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02385253",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014900317",
"https://doi.org/10.1007/bf02385253"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10543-009-0226-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001329581",
"https://doi.org/10.1007/s10543-009-0226-z"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-02-12",
"datePublishedReg": "2016-02-12",
"description": "We present a local convergence analysis of a derivative free fourth order method with one parameter based on rational interpolation in order to approximate a locally unique root of a function. The method is optimal in the sense of Traub. In earlier studies such as Steffensen (Scand Actuar J 16(1):64\u201372, 1933) and Zafer et al. (Sci World J, 2015. doi:10.1155/2015/934260) the convergence was based on hypotheses on the third derivative or even higher. We extend the applicability of theses methods using only the first derivative. Moreover, we provide computable radii and error bounds based on Lipschitz constants. Furthermore, the dynamics of this method are studied in order to find the best choice of the parameter in terms of convergence. An application is also presented in this study.",
"genre": "article",
"id": "sg:pub.10.1007/s10910-016-0605-z",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1026076",
"issn": [
"0259-9791",
"1572-8897"
],
"name": "Journal of Mathematical Chemistry",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "54"
}
],
"keywords": [
"local convergence analysis",
"fourth order method",
"terms of convergence",
"computable radius",
"convergence analysis",
"Lipschitz constants",
"order method",
"error bounds",
"local convergence",
"third derivative",
"unique root",
"rational interpolation",
"first derivative",
"convergence",
"Theses methods",
"interpolation",
"parameters",
"bounds",
"Steffensen",
"et al",
"chemical applications",
"Traub",
"dynamics",
"best choice",
"applications",
"order",
"applicability",
"radius",
"derivatives",
"terms",
"free roots",
"constants",
"sense",
"function",
"al",
"choice",
"analysis",
"roots",
"earlier studies",
"study",
"hypothesis",
"method"
],
"name": "Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation",
"pagination": "1404-1416",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030943405"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10910-016-0605-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10910-016-0605-z",
"https://app.dimensions.ai/details/publication/pub.1030943405"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_693.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10910-016-0605-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
75 URIs
59 LITERALS
6 BLANK NODES