Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02-12

AUTHORS

Ioannis K. Argyros, Á. Alberto Magreñán, Lara Orcos

ABSTRACT

We present a local convergence analysis of a derivative free fourth order method with one parameter based on rational interpolation in order to approximate a locally unique root of a function. The method is optimal in the sense of Traub. In earlier studies such as Steffensen (Scand Actuar J 16(1):64–72, 1933) and Zafer et al. (Sci World J, 2015. doi:10.1155/2015/934260) the convergence was based on hypotheses on the third derivative or even higher. We extend the applicability of theses methods using only the first derivative. Moreover, we provide computable radii and error bounds based on Lipschitz constants. Furthermore, the dynamics of this method are studied in order to find the best choice of the parameter in terms of convergence. An application is also presented in this study. More... »

PAGES

1404-1416

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z

DOI

http://dx.doi.org/10.1007/s10910-016-0605-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030943405


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "Ioannis K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magre\u00f1\u00e1n", 
        "givenName": "\u00c1. Alberto", 
        "id": "sg:person.013576636334.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Universidad Internacional de La Rioja, C/Gran V\u00eda 41, 26005, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orcos", 
        "givenName": "Lara", 
        "id": "sg:person.016113540473.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016113540473.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02241866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008743953", 
          "https://doi.org/10.1007/bf02241866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002459911012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334328", 
          "https://doi.org/10.1007/s002459911012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-004-2733-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039772729", 
          "https://doi.org/10.1007/s00010-004-2733-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038780485", 
          "https://doi.org/10.1007/bf02238803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-009-9302-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000709826", 
          "https://doi.org/10.1007/s11075-009-9302-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-011-9519-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024284171", 
          "https://doi.org/10.1007/s11075-011-9519-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02385253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014900317", 
          "https://doi.org/10.1007/bf02385253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10543-009-0226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329581", 
          "https://doi.org/10.1007/s10543-009-0226-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-12", 
    "datePublishedReg": "2016-02-12", 
    "description": "We present a local convergence analysis of a derivative free fourth order method with one parameter based on rational interpolation in order to approximate a locally unique root of a function. The method is optimal in the sense of Traub. In earlier studies such as Steffensen (Scand Actuar J 16(1):64\u201372, 1933) and Zafer et al. (Sci World J, 2015. doi:10.1155/2015/934260) the convergence was based on hypotheses on the third derivative or even higher. We extend the applicability of theses methods using only the first derivative. Moreover, we provide computable radii and error bounds based on Lipschitz constants. Furthermore, the dynamics of this method are studied in order to find the best choice of the parameter in terms of convergence. An application is also presented in this study.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10910-016-0605-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026076", 
        "issn": [
          "0259-9791", 
          "1572-8897"
        ], 
        "name": "Journal of Mathematical Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "local convergence analysis", 
      "fourth order method", 
      "terms of convergence", 
      "computable radius", 
      "convergence analysis", 
      "Lipschitz constants", 
      "order method", 
      "error bounds", 
      "local convergence", 
      "third derivative", 
      "unique root", 
      "rational interpolation", 
      "first derivative", 
      "convergence", 
      "Theses methods", 
      "interpolation", 
      "parameters", 
      "bounds", 
      "Steffensen", 
      "et al", 
      "chemical applications", 
      "Traub", 
      "dynamics", 
      "best choice", 
      "applications", 
      "order", 
      "applicability", 
      "radius", 
      "derivatives", 
      "terms", 
      "free roots", 
      "constants", 
      "sense", 
      "function", 
      "al", 
      "choice", 
      "analysis", 
      "roots", 
      "earlier studies", 
      "study", 
      "hypothesis", 
      "method"
    ], 
    "name": "Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation", 
    "pagination": "1404-1416", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030943405"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10910-016-0605-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10910-016-0605-z", 
      "https://app.dimensions.ai/details/publication/pub.1030943405"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_693.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10910-016-0605-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-016-0605-z'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      75 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10910-016-0605-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N450606afad0e4500aefa85c4bcd91961
4 schema:citation sg:pub.10.1007/bf02238803
5 sg:pub.10.1007/bf02241866
6 sg:pub.10.1007/bf02385253
7 sg:pub.10.1007/s00010-004-2733-y
8 sg:pub.10.1007/s002459911012
9 sg:pub.10.1007/s10543-009-0226-z
10 sg:pub.10.1007/s11075-009-9302-3
11 sg:pub.10.1007/s11075-011-9519-9
12 schema:datePublished 2016-02-12
13 schema:datePublishedReg 2016-02-12
14 schema:description We present a local convergence analysis of a derivative free fourth order method with one parameter based on rational interpolation in order to approximate a locally unique root of a function. The method is optimal in the sense of Traub. In earlier studies such as Steffensen (Scand Actuar J 16(1):64–72, 1933) and Zafer et al. (Sci World J, 2015. doi:10.1155/2015/934260) the convergence was based on hypotheses on the third derivative or even higher. We extend the applicability of theses methods using only the first derivative. Moreover, we provide computable radii and error bounds based on Lipschitz constants. Furthermore, the dynamics of this method are studied in order to find the best choice of the parameter in terms of convergence. An application is also presented in this study.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N25451ec63a264ebe9a4574d614567153
19 N7999992848e842839a2ccf6851380739
20 sg:journal.1026076
21 schema:keywords Lipschitz constants
22 Steffensen
23 Theses methods
24 Traub
25 al
26 analysis
27 applicability
28 applications
29 best choice
30 bounds
31 chemical applications
32 choice
33 computable radius
34 constants
35 convergence
36 convergence analysis
37 derivatives
38 dynamics
39 earlier studies
40 error bounds
41 et al
42 first derivative
43 fourth order method
44 free roots
45 function
46 hypothesis
47 interpolation
48 local convergence
49 local convergence analysis
50 method
51 order
52 order method
53 parameters
54 radius
55 rational interpolation
56 roots
57 sense
58 study
59 terms
60 terms of convergence
61 third derivative
62 unique root
63 schema:name Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation
64 schema:pagination 1404-1416
65 schema:productId N2614b959f5594a82a9be5af75488fd1a
66 Nf9d4dfffb4ca402d87b1b970a3ce47c6
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030943405
68 https://doi.org/10.1007/s10910-016-0605-z
69 schema:sdDatePublished 2022-05-20T07:32
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N578fa5d3d13644d1befcccf108c05e02
72 schema:url https://doi.org/10.1007/s10910-016-0605-z
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N07b5274893cc4fcda21a89272ceb1254 rdf:first sg:person.016113540473.51
77 rdf:rest rdf:nil
78 N25451ec63a264ebe9a4574d614567153 schema:volumeNumber 54
79 rdf:type schema:PublicationVolume
80 N2614b959f5594a82a9be5af75488fd1a schema:name dimensions_id
81 schema:value pub.1030943405
82 rdf:type schema:PropertyValue
83 N450606afad0e4500aefa85c4bcd91961 rdf:first sg:person.015707547201.06
84 rdf:rest N9616456ff6ed458faf558e9d01409e6b
85 N578fa5d3d13644d1befcccf108c05e02 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N7999992848e842839a2ccf6851380739 schema:issueNumber 7
88 rdf:type schema:PublicationIssue
89 N9616456ff6ed458faf558e9d01409e6b rdf:first sg:person.013576636334.52
90 rdf:rest N07b5274893cc4fcda21a89272ceb1254
91 Nf9d4dfffb4ca402d87b1b970a3ce47c6 schema:name doi
92 schema:value 10.1007/s10910-016-0605-z
93 rdf:type schema:PropertyValue
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:journal.1026076 schema:issn 0259-9791
101 1572-8897
102 schema:name Journal of Mathematical Chemistry
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.013576636334.52 schema:affiliation grid-institutes:grid.13825.3d
106 schema:familyName Magreñán
107 schema:givenName Á. Alberto
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52
109 rdf:type schema:Person
110 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
111 schema:familyName Argyros
112 schema:givenName Ioannis K.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
114 rdf:type schema:Person
115 sg:person.016113540473.51 schema:affiliation grid-institutes:grid.13825.3d
116 schema:familyName Orcos
117 schema:givenName Lara
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016113540473.51
119 rdf:type schema:Person
120 sg:pub.10.1007/bf02238803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038780485
121 https://doi.org/10.1007/bf02238803
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf02241866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008743953
124 https://doi.org/10.1007/bf02241866
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02385253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014900317
127 https://doi.org/10.1007/bf02385253
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00010-004-2733-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039772729
130 https://doi.org/10.1007/s00010-004-2733-y
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s002459911012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049334328
133 https://doi.org/10.1007/s002459911012
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10543-009-0226-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329581
136 https://doi.org/10.1007/s10543-009-0226-z
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s11075-009-9302-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000709826
139 https://doi.org/10.1007/s11075-009-9302-3
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s11075-011-9519-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024284171
142 https://doi.org/10.1007/s11075-011-9519-9
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.13825.3d schema:alternateName Universidad Internacional de La Rioja, C/Gran Vía 41, 26005, Logroño, La Rioja, Spain
145 schema:name Universidad Internacional de La Rioja, C/Gran Vía 41, 26005, Logroño, La Rioja, Spain
146 rdf:type schema:Organization
147 grid-institutes:grid.253592.a schema:alternateName Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
148 schema:name Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...