Lindstedt Poincare technique applied to molecular potentials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02-01

AUTHORS

Shayak Bhattacharjee, J. K. Bhattacharjee

ABSTRACT

The Lindstedt–Poincare technique has traditionally been used to deal with oscillators with power-law potentials. We show how this method can be extended to deal with molecular potentials for which the frequency goes to zero as the energy approaches zero. The extension requires the use of an asymptotic analysis which is combined with perturbation theory. For the Morse potential, we get an exact answer while for the Lennard Jones class of potentials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm V}={\rm V}_0 \left[ {\left( {\frac{{a}}{{\rm x}}}\right)^{2{\rm n}}-\left({\frac{{\rm a}}{{\rm x}}}\right)^{{\rm n}}}\right]}$$\end{document} , the answer is generally approximate with some values of n giving exact results. For the widely studied case, n=6, our approximation gives better than 1% accuracy at the lowest order of calculation. We show that as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm n} \rightarrow \infty}$$\end{document} , the result tends to that for the Morse potential. We also point out that the time period obtained by us can be used to obtain the quantum mechanical energy levels of these potentials within the Bohr-Sommerfeld scheme. More... »

PAGES

1398-1410

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10910-012-9978-9

DOI

http://dx.doi.org/10.1007/s10910-012-9978-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025845540


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur, India", 
          "id": "http://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "Shayak", 
        "id": "sg:person.014347237527.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014347237527.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "S. N. Bose National Centre for Basic Sciences, Salt Lake, 700098, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.452759.8", 
          "name": [
            "S. N. Bose National Centre for Basic Sciences, Salt Lake, 700098, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "J. K.", 
        "id": "sg:person.015365735162.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-02-01", 
    "datePublishedReg": "2012-02-01", 
    "description": "The Lindstedt\u2013Poincare technique has traditionally been used to deal with oscillators with power-law potentials. We show how this method can be extended to deal with molecular potentials for which the frequency goes to zero as the energy approaches zero. The extension requires the use of an asymptotic analysis which is combined with perturbation theory. For the Morse potential, we get an exact answer while for the Lennard Jones class of potentials \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\rm V}={\\rm V}_0 \\left[ {\\left( {\\frac{{a}}{{\\rm x}}}\\right)^{2{\\rm n}}-\\left({\\frac{{\\rm a}}{{\\rm x}}}\\right)^{{\\rm n}}}\\right]}$$\\end{document} , the answer is generally approximate with some values of n giving exact results. For the widely studied case, n=6, our approximation gives better than 1% accuracy at the lowest order of calculation. We show that as \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\rm n} \\rightarrow \\infty}$$\\end{document} , the result tends to that for the Morse potential. We also point out that the time period obtained by us can be used to obtain the quantum mechanical energy levels of these potentials within the Bohr-Sommerfeld scheme.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10910-012-9978-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026076", 
        "issn": [
          "0259-9791", 
          "1572-8897"
        ], 
        "name": "Journal of Mathematical Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "keywords": [
      "Lindstedt-Poincare technique", 
      "power-law potential", 
      "asymptotic analysis", 
      "Morse potential", 
      "exact results", 
      "exact answer", 
      "lowest order", 
      "perturbation theory", 
      "quantum mechanical energy levels", 
      "approximation", 
      "mechanical energy levels", 
      "scheme", 
      "theory", 
      "oscillator", 
      "class", 
      "extension", 
      "technique", 
      "accuracy", 
      "answers", 
      "molecular potential", 
      "results", 
      "calculations", 
      "order", 
      "energy levels", 
      "cases", 
      "analysis", 
      "time period", 
      "values", 
      "use", 
      "energy", 
      "potential", 
      "frequency", 
      "levels", 
      "period", 
      "method", 
      "Lennard Jones class", 
      "Jones class", 
      "Bohr-Sommerfeld scheme", 
      "Lindstedt Poincare technique", 
      "Poincare technique"
    ], 
    "name": "Lindstedt Poincare technique applied to molecular potentials", 
    "pagination": "1398-1410", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025845540"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10910-012-9978-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10910-012-9978-9", 
      "https://app.dimensions.ai/details/publication/pub.1025845540"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_563.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10910-012-9978-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-012-9978-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-012-9978-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-012-9978-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-012-9978-9'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      65 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10910-012-9978-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N55a6d8365764440cb70e1b50ddf6c945
4 schema:datePublished 2012-02-01
5 schema:datePublishedReg 2012-02-01
6 schema:description The Lindstedt–Poincare technique has traditionally been used to deal with oscillators with power-law potentials. We show how this method can be extended to deal with molecular potentials for which the frequency goes to zero as the energy approaches zero. The extension requires the use of an asymptotic analysis which is combined with perturbation theory. For the Morse potential, we get an exact answer while for the Lennard Jones class of potentials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm V}={\rm V}_0 \left[ {\left( {\frac{{a}}{{\rm x}}}\right)^{2{\rm n}}-\left({\frac{{\rm a}}{{\rm x}}}\right)^{{\rm n}}}\right]}$$\end{document} , the answer is generally approximate with some values of n giving exact results. For the widely studied case, n=6, our approximation gives better than 1% accuracy at the lowest order of calculation. We show that as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm n} \rightarrow \infty}$$\end{document} , the result tends to that for the Morse potential. We also point out that the time period obtained by us can be used to obtain the quantum mechanical energy levels of these potentials within the Bohr-Sommerfeld scheme.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N54c159a4269740edbbd43f2573668f59
11 Na016af2d0df8461ca11592694f7dc58e
12 sg:journal.1026076
13 schema:keywords Bohr-Sommerfeld scheme
14 Jones class
15 Lennard Jones class
16 Lindstedt Poincare technique
17 Lindstedt-Poincare technique
18 Morse potential
19 Poincare technique
20 accuracy
21 analysis
22 answers
23 approximation
24 asymptotic analysis
25 calculations
26 cases
27 class
28 energy
29 energy levels
30 exact answer
31 exact results
32 extension
33 frequency
34 levels
35 lowest order
36 mechanical energy levels
37 method
38 molecular potential
39 order
40 oscillator
41 period
42 perturbation theory
43 potential
44 power-law potential
45 quantum mechanical energy levels
46 results
47 scheme
48 technique
49 theory
50 time period
51 use
52 values
53 schema:name Lindstedt Poincare technique applied to molecular potentials
54 schema:pagination 1398-1410
55 schema:productId N7828b370fba04c2bae5b23ac2c2e0af3
56 N90d8332af205430e8f3a438db418e718
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025845540
58 https://doi.org/10.1007/s10910-012-9978-9
59 schema:sdDatePublished 2021-11-01T18:18
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N9d027d9eaaa5405690c19cfafbdabf18
62 schema:url https://doi.org/10.1007/s10910-012-9978-9
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N426cfbfff4f74baeb213e4da61c9c96a rdf:first sg:person.015365735162.55
67 rdf:rest rdf:nil
68 N54c159a4269740edbbd43f2573668f59 schema:volumeNumber 50
69 rdf:type schema:PublicationVolume
70 N55a6d8365764440cb70e1b50ddf6c945 rdf:first sg:person.014347237527.00
71 rdf:rest N426cfbfff4f74baeb213e4da61c9c96a
72 N7828b370fba04c2bae5b23ac2c2e0af3 schema:name dimensions_id
73 schema:value pub.1025845540
74 rdf:type schema:PropertyValue
75 N90d8332af205430e8f3a438db418e718 schema:name doi
76 schema:value 10.1007/s10910-012-9978-9
77 rdf:type schema:PropertyValue
78 N9d027d9eaaa5405690c19cfafbdabf18 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Na016af2d0df8461ca11592694f7dc58e schema:issueNumber 6
81 rdf:type schema:PublicationIssue
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
86 schema:name Statistics
87 rdf:type schema:DefinedTerm
88 sg:journal.1026076 schema:issn 0259-9791
89 1572-8897
90 schema:name Journal of Mathematical Chemistry
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.014347237527.00 schema:affiliation grid-institutes:grid.417965.8
94 schema:familyName Bhattacharjee
95 schema:givenName Shayak
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014347237527.00
97 rdf:type schema:Person
98 sg:person.015365735162.55 schema:affiliation grid-institutes:grid.452759.8
99 schema:familyName Bhattacharjee
100 schema:givenName J. K.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55
102 rdf:type schema:Person
103 grid-institutes:grid.417965.8 schema:alternateName Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur, India
104 schema:name Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur, India
105 rdf:type schema:Organization
106 grid-institutes:grid.452759.8 schema:alternateName S. N. Bose National Centre for Basic Sciences, Salt Lake, 700098, Kolkata, India
107 schema:name S. N. Bose National Centre for Basic Sciences, Salt Lake, 700098, Kolkata, India
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...