Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-04

AUTHORS

P. Alonso, F. Argüeso, R. Cortina, J. Ranilla, A. M. Vidal

ABSTRACT

In this work we present a suitable computational tool to deal with large matrices and solve systems of non-linear equations. This technique is applied to a very interesting problem: the detection and flux estimation of point sources in Cosmic Microwave Background (CMB) maps, which allows a good determination of CMB primordial fluctuations and leads to a better knowledge of the chemistry at the early stages of the Universe. The method uses previous information about the statistical properties of the sources, so that this knowledge is incorporated in a Bayesian scheme. Simulations show that our approach allows the detection of more sources than previous non-Bayesian techniques, with a small computation time. More... »

PAGES

1153-1163

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10910-012-0078-7

DOI

http://dx.doi.org/10.1007/s10910-012-0078-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022582909


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Mathematics, University of Oviedo, 33203, Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alonso", 
        "givenName": "P.", 
        "id": "sg:person.010447163440.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010447163440.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Mathematics, University of Oviedo, 33203, Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arg\u00fceso", 
        "givenName": "F.", 
        "id": "sg:person.013454247655.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454247655.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Computer Science, University of Oviedo, 33203, Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cortina", 
        "givenName": "R.", 
        "id": "sg:person.011672701577.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011672701577.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Computer Science, University of Oviedo, 33203, Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ranilla", 
        "givenName": "J.", 
        "id": "sg:person.011017130042.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011017130042.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "Department of Computer Systems and Computation, Universitat Polit\u00e8cnica de Val\u00e8ncia, 46022, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vidal", 
        "givenName": "A. M.", 
        "id": "sg:person.015260331465.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015260331465.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0067-0049/180/2/296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014422135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-011-9936-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027855709", 
          "https://doi.org/10.1007/s10910-011-9936-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2008.14016.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035993552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2011.18398.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037098771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/410965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041024130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-012-0824-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042268539", 
          "https://doi.org/10.1007/s11227-012-0824-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361:20042108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056934153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361:200809861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056940447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/148307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058479598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/173993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058505283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/186504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058516013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/377226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058670318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2009.934716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061423322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1983.1164208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519310"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "In this work we present a suitable computational tool to deal with large matrices and solve systems of non-linear equations. This technique is applied to a very interesting problem: the detection and flux estimation of point sources in Cosmic Microwave Background (CMB) maps, which allows a good determination of CMB primordial fluctuations and leads to a better knowledge of the chemistry at the early stages of the Universe. The method uses previous information about the statistical properties of the sources, so that this knowledge is incorporated in a Bayesian scheme. Simulations show that our approach allows the detection of more sources than previous non-Bayesian techniques, with a small computation time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10910-012-0078-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026076", 
        "issn": [
          "0259-9791", 
          "1572-8897"
        ], 
        "name": "Journal of Mathematical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques", 
    "pagination": "1153-1163", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6b96de36331cd5c2431f7fbf6bfd7dbba0ec4dcfd1484c7c6c4508df208b5d00"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10910-012-0078-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022582909"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10910-012-0078-7", 
      "https://app.dimensions.ai/details/publication/pub.1022582909"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10910-012-0078-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-012-0078-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-012-0078-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-012-0078-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-012-0078-7'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10910-012-0078-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N73dcdba37b304080880c194902c955dc
4 schema:citation sg:pub.10.1007/s10910-011-9936-y
5 sg:pub.10.1007/s11227-012-0824-4
6 https://doi.org/10.1051/0004-6361:20042108
7 https://doi.org/10.1051/0004-6361:200809861
8 https://doi.org/10.1086/148307
9 https://doi.org/10.1086/173993
10 https://doi.org/10.1086/186504
11 https://doi.org/10.1086/377226
12 https://doi.org/10.1088/0067-0049/180/2/296
13 https://doi.org/10.1109/msp.2009.934716
14 https://doi.org/10.1109/tassp.1983.1164208
15 https://doi.org/10.1111/j.1365-2966.2008.14016.x
16 https://doi.org/10.1111/j.1365-2966.2011.18398.x
17 https://doi.org/10.1155/2012/410965
18 schema:datePublished 2013-04
19 schema:datePublishedReg 2013-04-01
20 schema:description In this work we present a suitable computational tool to deal with large matrices and solve systems of non-linear equations. This technique is applied to a very interesting problem: the detection and flux estimation of point sources in Cosmic Microwave Background (CMB) maps, which allows a good determination of CMB primordial fluctuations and leads to a better knowledge of the chemistry at the early stages of the Universe. The method uses previous information about the statistical properties of the sources, so that this knowledge is incorporated in a Bayesian scheme. Simulations show that our approach allows the detection of more sources than previous non-Bayesian techniques, with a small computation time.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N9c7f015096d0434084afe762f4a562ee
25 Na07240eea0fe41868ba0832ee16d3446
26 sg:journal.1026076
27 schema:name Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques
28 schema:pagination 1153-1163
29 schema:productId N38454394814d442ca73515cbf1d739f0
30 N46d029a2faf8405a9b14ef46445e3f64
31 N5396bc64af1d437ba89dae0d3954d896
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022582909
33 https://doi.org/10.1007/s10910-012-0078-7
34 schema:sdDatePublished 2019-04-10T16:42
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N920c1fad45654457bc270cbc95098474
37 schema:url http://link.springer.com/10.1007%2Fs10910-012-0078-7
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1f39d33a8dd14f2fb958481951caf388 rdf:first sg:person.015260331465.48
42 rdf:rest rdf:nil
43 N38454394814d442ca73515cbf1d739f0 schema:name doi
44 schema:value 10.1007/s10910-012-0078-7
45 rdf:type schema:PropertyValue
46 N46d029a2faf8405a9b14ef46445e3f64 schema:name readcube_id
47 schema:value 6b96de36331cd5c2431f7fbf6bfd7dbba0ec4dcfd1484c7c6c4508df208b5d00
48 rdf:type schema:PropertyValue
49 N5396bc64af1d437ba89dae0d3954d896 schema:name dimensions_id
50 schema:value pub.1022582909
51 rdf:type schema:PropertyValue
52 N73dcdba37b304080880c194902c955dc rdf:first sg:person.010447163440.01
53 rdf:rest N98b6b759bea6426e9f5a1fd41d9a42c2
54 N920c1fad45654457bc270cbc95098474 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N98b6b759bea6426e9f5a1fd41d9a42c2 rdf:first sg:person.013454247655.13
57 rdf:rest Nf9630e61c5004c778c9d79b6217d99e0
58 N9adfe30ebdac4151a879ee8ed0e10e9b rdf:first sg:person.011017130042.09
59 rdf:rest N1f39d33a8dd14f2fb958481951caf388
60 N9c7f015096d0434084afe762f4a562ee schema:issueNumber 4
61 rdf:type schema:PublicationIssue
62 Na07240eea0fe41868ba0832ee16d3446 schema:volumeNumber 51
63 rdf:type schema:PublicationVolume
64 Nf9630e61c5004c778c9d79b6217d99e0 rdf:first sg:person.011672701577.00
65 rdf:rest N9adfe30ebdac4151a879ee8ed0e10e9b
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
70 schema:name Statistics
71 rdf:type schema:DefinedTerm
72 sg:journal.1026076 schema:issn 0259-9791
73 1572-8897
74 schema:name Journal of Mathematical Chemistry
75 rdf:type schema:Periodical
76 sg:person.010447163440.01 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
77 schema:familyName Alonso
78 schema:givenName P.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010447163440.01
80 rdf:type schema:Person
81 sg:person.011017130042.09 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
82 schema:familyName Ranilla
83 schema:givenName J.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011017130042.09
85 rdf:type schema:Person
86 sg:person.011672701577.00 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
87 schema:familyName Cortina
88 schema:givenName R.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011672701577.00
90 rdf:type schema:Person
91 sg:person.013454247655.13 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
92 schema:familyName Argüeso
93 schema:givenName F.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454247655.13
95 rdf:type schema:Person
96 sg:person.015260331465.48 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
97 schema:familyName Vidal
98 schema:givenName A. M.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015260331465.48
100 rdf:type schema:Person
101 sg:pub.10.1007/s10910-011-9936-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027855709
102 https://doi.org/10.1007/s10910-011-9936-y
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11227-012-0824-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042268539
105 https://doi.org/10.1007/s11227-012-0824-4
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1051/0004-6361:20042108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056934153
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1051/0004-6361:200809861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056940447
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1086/148307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058479598
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1086/173993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058505283
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1086/186504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058516013
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1086/377226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058670318
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/0067-0049/180/2/296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014422135
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/msp.2009.934716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423322
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tassp.1983.1164208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519310
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1365-2966.2008.14016.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035993552
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1365-2966.2011.18398.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037098771
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1155/2012/410965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041024130
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
132 schema:name Department of Computer Science, University of Oviedo, 33203, Gijón, Spain
133 Department of Mathematics, University of Oviedo, 33203, Gijón, Spain
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.157927.f schema:alternateName Polytechnic University of Valencia
136 schema:name Department of Computer Systems and Computation, Universitat Politècnica de València, 46022, Valencia, Spain
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...