Linear conjugacy of chemical reaction networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-08

AUTHORS

Matthew D. Johnston, David Siegel

ABSTRACT

Under suitable assumptions, the dynamic behaviour of a chemical reaction network is governed by an autonomous set of polynomial ordinary differential equations over continuous variables representing the concentrations of the reactant species. It is known that two networks may possess the same governing mass-action dynamics despite disparate network structure. To date, however, there has only been limited work exploiting this phenomenon even for the cases where one network possesses known dynamics while the other does not. In this paper, we bring these known results into a broader unified theory which we call conjugate chemical reaction network theory. We present a theorem which gives conditions under which two networks with different governing mass-action dynamics may exhibit the same qualitative dynamics and use it to extend the scope of the well-known theory of weakly reversible systems. More... »

PAGES

1263-1282

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10910-011-9817-4

DOI

http://dx.doi.org/10.1007/s10910-011-9817-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040550437


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnston", 
        "givenName": "Matthew D.", 
        "id": "sg:person.01174250571.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174250571.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siegel", 
        "givenName": "David", 
        "id": "sg:person.01242363771.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242363771.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-4067-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000039730", 
          "https://doi.org/10.1007/978-1-4757-4067-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4067-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000039730", 
          "https://doi.org/10.1007/978-1-4757-4067-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00255664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001728211", 
          "https://doi.org/10.1007/bf00255664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00255664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001728211", 
          "https://doi.org/10.1007/bf00255664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002568620", 
          "https://doi.org/10.1007/bf00250853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002568620", 
          "https://doi.org/10.1007/bf00250853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009390404", 
          "https://doi.org/10.1007/bf00251527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009390404", 
          "https://doi.org/10.1007/bf00251527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00375614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015255045", 
          "https://doi.org/10.1007/bf00375614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2007.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015550957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2009.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019232305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-007-9307-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021306492", 
          "https://doi.org/10.1007/s10910-007-9307-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2509(94)80061-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027977071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsc.2008.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031364908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032254027", 
          "https://doi.org/10.1007/bf00251225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032254027", 
          "https://doi.org/10.1007/bf00251225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019183206064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036496484", 
          "https://doi.org/10.1023/a:1019183206064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-009-9525-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045140371", 
          "https://doi.org/10.1007/s10910-009-9525-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-008-9499-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045720341", 
          "https://doi.org/10.1007/s10910-008-9499-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.935056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061246754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050634177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070698282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/090764098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062856479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139904440278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511610684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109399044"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08", 
    "datePublishedReg": "2011-08-01", 
    "description": "Under suitable assumptions, the dynamic behaviour of a chemical reaction network is governed by an autonomous set of polynomial ordinary differential equations over continuous variables representing the concentrations of the reactant species. It is known that two networks may possess the same governing mass-action dynamics despite disparate network structure. To date, however, there has only been limited work exploiting this phenomenon even for the cases where one network possesses known dynamics while the other does not. In this paper, we bring these known results into a broader unified theory which we call conjugate chemical reaction network theory. We present a theorem which gives conditions under which two networks with different governing mass-action dynamics may exhibit the same qualitative dynamics and use it to extend the scope of the well-known theory of weakly reversible systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10910-011-9817-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026076", 
        "issn": [
          "0259-9791", 
          "1572-8897"
        ], 
        "name": "Journal of Mathematical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Linear conjugacy of chemical reaction networks", 
    "pagination": "1263-1282", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c12ac8301ad962c6b4e7c1230396711304e3372defd03fcdc0f1e17be4482955"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10910-011-9817-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040550437"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10910-011-9817-4", 
      "https://app.dimensions.ai/details/publication/pub.1040550437"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000592.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10910-011-9817-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-011-9817-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-011-9817-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-011-9817-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-011-9817-4'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10910-011-9817-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6a118d23972146149b8d9f19a404b2a0
4 schema:citation sg:pub.10.1007/978-1-4757-4067-7
5 sg:pub.10.1007/bf00250853
6 sg:pub.10.1007/bf00251225
7 sg:pub.10.1007/bf00251527
8 sg:pub.10.1007/bf00255664
9 sg:pub.10.1007/bf00375614
10 sg:pub.10.1007/s10910-007-9307-x
11 sg:pub.10.1007/s10910-008-9499-8
12 sg:pub.10.1007/s10910-009-9525-5
13 sg:pub.10.1023/a:1019183206064
14 https://doi.org/10.1016/0009-2509(94)80061-8
15 https://doi.org/10.1016/j.compbiolchem.2009.07.014
16 https://doi.org/10.1016/j.jsc.2008.08.006
17 https://doi.org/10.1016/j.mbs.2007.07.003
18 https://doi.org/10.1017/cbo9780511610684
19 https://doi.org/10.1109/9.935056
20 https://doi.org/10.1137/050634177
21 https://doi.org/10.1137/070698282
22 https://doi.org/10.1137/090764098
23 https://doi.org/10.1137/s0036139904440278
24 schema:datePublished 2011-08
25 schema:datePublishedReg 2011-08-01
26 schema:description Under suitable assumptions, the dynamic behaviour of a chemical reaction network is governed by an autonomous set of polynomial ordinary differential equations over continuous variables representing the concentrations of the reactant species. It is known that two networks may possess the same governing mass-action dynamics despite disparate network structure. To date, however, there has only been limited work exploiting this phenomenon even for the cases where one network possesses known dynamics while the other does not. In this paper, we bring these known results into a broader unified theory which we call conjugate chemical reaction network theory. We present a theorem which gives conditions under which two networks with different governing mass-action dynamics may exhibit the same qualitative dynamics and use it to extend the scope of the well-known theory of weakly reversible systems.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N1f96565dca0c4cafb6cca8567d83db67
31 N68601b4b20ae4ddd81d571cc789d18d4
32 sg:journal.1026076
33 schema:name Linear conjugacy of chemical reaction networks
34 schema:pagination 1263-1282
35 schema:productId N815e7b2804dc4e3fba8a8b1f5b42257c
36 N8ec87c8f42ea4c4aa36cf3f137a5e595
37 Nb1a5212b2f0f4499830200507826deeb
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040550437
39 https://doi.org/10.1007/s10910-011-9817-4
40 schema:sdDatePublished 2019-04-10T21:52
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N925057e4bb9448a1a0051426f636894f
43 schema:url http://link.springer.com/10.1007%2Fs10910-011-9817-4
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N1f96565dca0c4cafb6cca8567d83db67 schema:issueNumber 7
48 rdf:type schema:PublicationIssue
49 N68601b4b20ae4ddd81d571cc789d18d4 schema:volumeNumber 49
50 rdf:type schema:PublicationVolume
51 N6a118d23972146149b8d9f19a404b2a0 rdf:first sg:person.01174250571.19
52 rdf:rest Nf68540123de546d2976dd2b3bbc56d05
53 N815e7b2804dc4e3fba8a8b1f5b42257c schema:name dimensions_id
54 schema:value pub.1040550437
55 rdf:type schema:PropertyValue
56 N8ec87c8f42ea4c4aa36cf3f137a5e595 schema:name readcube_id
57 schema:value c12ac8301ad962c6b4e7c1230396711304e3372defd03fcdc0f1e17be4482955
58 rdf:type schema:PropertyValue
59 N925057e4bb9448a1a0051426f636894f schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nb1a5212b2f0f4499830200507826deeb schema:name doi
62 schema:value 10.1007/s10910-011-9817-4
63 rdf:type schema:PropertyValue
64 Nf68540123de546d2976dd2b3bbc56d05 rdf:first sg:person.01242363771.96
65 rdf:rest rdf:nil
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1026076 schema:issn 0259-9791
73 1572-8897
74 schema:name Journal of Mathematical Chemistry
75 rdf:type schema:Periodical
76 sg:person.01174250571.19 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
77 schema:familyName Johnston
78 schema:givenName Matthew D.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174250571.19
80 rdf:type schema:Person
81 sg:person.01242363771.96 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
82 schema:familyName Siegel
83 schema:givenName David
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242363771.96
85 rdf:type schema:Person
86 sg:pub.10.1007/978-1-4757-4067-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000039730
87 https://doi.org/10.1007/978-1-4757-4067-7
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf00250853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002568620
90 https://doi.org/10.1007/bf00250853
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf00251225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032254027
93 https://doi.org/10.1007/bf00251225
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf00251527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009390404
96 https://doi.org/10.1007/bf00251527
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf00255664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001728211
99 https://doi.org/10.1007/bf00255664
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf00375614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015255045
102 https://doi.org/10.1007/bf00375614
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10910-007-9307-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021306492
105 https://doi.org/10.1007/s10910-007-9307-x
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10910-008-9499-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045720341
108 https://doi.org/10.1007/s10910-008-9499-8
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10910-009-9525-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045140371
111 https://doi.org/10.1007/s10910-009-9525-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/a:1019183206064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036496484
114 https://doi.org/10.1023/a:1019183206064
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0009-2509(94)80061-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027977071
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.compbiolchem.2009.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019232305
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jsc.2008.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031364908
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.mbs.2007.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015550957
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1017/cbo9780511610684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109399044
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/9.935056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061246754
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1137/050634177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846335
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1137/070698282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851414
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1137/090764098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856479
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1137/s0036139904440278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874995
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
137 schema:name Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...