KINMODEL (AGDC): a multipurpose computational method for kinetic treatment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01

AUTHORS

M. M. Canedo, J. L. González-Hernández

ABSTRACT

KINMODEL (AGDC) is a kinetic computational methodology that is valid for the treatment of any reaction mechanism and that allows the determination of different kinetic and non-kinetic parameters from the experimental data acquired by monitoring absorbance at one or several different wavelengths. It is a numerical computational model that can be applied to any reaction mechanism, with the advantage that on changing the treatment from one mechanism to another it is not necessary to modify even a single line of the program code since it automatically establishes and solves the set of differential rate equations. It is able to treat a broad set of reaction mechanisms in the individual and joint determination of the following groups of parameters (a) the individual rate constants of the different reaction mechanisms; (b) the values of the molar absorption coefficients (which are very valuable in the case of intermediate species and their identification) of all the species involved in the mechanism, and (c) the concentrations of the species participating in the mechanism. The program can be used by non-experts in the field and it is able to treat mechanisms involving ambiguities in the solutions and in the identification of parameters when kinetic constants and molar absorption coefficients are optimized together, and it allows a discrimination to be made between the possible mechanisms responsible for the course of the reaction after the residuals have been analyzed statistically, automatically choosing the one that best fits the kinetic data. More... »

PAGES

163-184

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10910-010-9733-z

DOI

http://dx.doi.org/10.1007/s10910-010-9733-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004836929


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salamanca", 
          "id": "https://www.grid.ac/institutes/grid.11762.33", 
          "name": [
            "Department of Physical Chemistry, Faculty of Chemistry, University of Salamanca, Pza. de la Merced s/n, 37008, Salamanca, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canedo", 
        "givenName": "M. M.", 
        "id": "sg:person.014702772705.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702772705.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salamanca", 
          "id": "https://www.grid.ac/institutes/grid.11762.33", 
          "name": [
            "Department of Physical Chemistry, Faculty of Chemistry, University of Salamanca, Pza. de la Merced s/n, 37008, Salamanca, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez-Hern\u00e1ndez", 
        "givenName": "J. L.", 
        "id": "sg:person.01064701655.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064701655.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jps.2600810626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000246690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2005.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000455822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(00)00994-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001145772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-8485(87)85005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003316183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2008.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003433519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/kin.550090404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004381650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/an9901500721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005343919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01242655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005366218", 
          "https://doi.org/10.1007/bf01242655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(03)00007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005477897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(03)00007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005477897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-9140(93)80091-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008744218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(03)00354-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010350917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(03)00354-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010350917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2009.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013544874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/an9931800695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014091490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(97)00062-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014976154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(00)00112-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015176531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(03)00008-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015604375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(99)00442-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016250975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1351/pac199668010149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018092918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/recl.19650840506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019273291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/recl.19650840506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019273291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/kin.550200107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021085309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.2600821121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024263784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1351/pac198153030753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026367673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(98)00173-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028620920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2007.02.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029064643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-8485(90)80020-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029187885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8485(02)00014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029823348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/kin.550100505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029973660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(98)00542-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032442958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/kin.20136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032461988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/kin.20136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032461988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(00)00080-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035049346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8485(98)00002-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036801043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-8485(95)00068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039389938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040588523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2008.10.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042443897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(01)00141-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042603672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.540120302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048355224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2005.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050520149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00081a025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054970800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00219a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054981393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci960143y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055405127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci960143y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055405127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ed052p642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055449440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ed065p599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055457793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100071a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055651776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100314a024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055664135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100884a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055684653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01092a039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055767466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/0003702011951281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065255472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/0003702011951281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065255472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420018301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109378425"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01", 
    "datePublishedReg": "2011-01-01", 
    "description": "KINMODEL (AGDC) is a kinetic computational methodology that is valid for the treatment of any reaction mechanism and that allows the determination of different kinetic and non-kinetic parameters from the experimental data acquired by monitoring absorbance at one or several different wavelengths. It is a numerical computational model that can be applied to any reaction mechanism, with the advantage that on changing the treatment from one mechanism to another it is not necessary to modify even a single line of the program code since it automatically establishes and solves the set of differential rate equations. It is able to treat a broad set of reaction mechanisms in the individual and joint determination of the following groups of parameters (a) the individual rate constants of the different reaction mechanisms; (b) the values of the molar absorption coefficients (which are very valuable in the case of intermediate species and their identification) of all the species involved in the mechanism, and (c) the concentrations of the species participating in the mechanism. The program can be used by non-experts in the field and it is able to treat mechanisms involving ambiguities in the solutions and in the identification of parameters when kinetic constants and molar absorption coefficients are optimized together, and it allows a discrimination to be made between the possible mechanisms responsible for the course of the reaction after the residuals have been analyzed statistically, automatically choosing the one that best fits the kinetic data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10910-010-9733-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026076", 
        "issn": [
          "0259-9791", 
          "1572-8897"
        ], 
        "name": "Journal of Mathematical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "KINMODEL (AGDC): a multipurpose computational method for kinetic treatment", 
    "pagination": "163-184", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "170c5ae551f76614fa578c504cec524d233f90925913e93f5102d6fce9e5545f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10910-010-9733-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004836929"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10910-010-9733-z", 
      "https://app.dimensions.ai/details/publication/pub.1004836929"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000580.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10910-010-9733-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-010-9733-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-010-9733-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-010-9733-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-010-9733-z'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10910-010-9733-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N91dc4188fe244efb935beb67f7add10b
4 schema:citation sg:pub.10.1007/bf01242655
5 https://doi.org/10.1002/cem.668
6 https://doi.org/10.1002/jcc.540120302
7 https://doi.org/10.1002/jps.2600810626
8 https://doi.org/10.1002/jps.2600821121
9 https://doi.org/10.1002/kin.20136
10 https://doi.org/10.1002/kin.550090404
11 https://doi.org/10.1002/kin.550100505
12 https://doi.org/10.1002/kin.550200107
13 https://doi.org/10.1002/recl.19650840506
14 https://doi.org/10.1016/0039-9140(93)80091-5
15 https://doi.org/10.1016/0097-8485(87)85005-2
16 https://doi.org/10.1016/0097-8485(90)80020-3
17 https://doi.org/10.1016/0097-8485(95)00068-2
18 https://doi.org/10.1016/j.aca.2007.02.040
19 https://doi.org/10.1016/j.aca.2008.10.052
20 https://doi.org/10.1016/j.ces.2008.01.020
21 https://doi.org/10.1016/j.chemolab.2005.06.016
22 https://doi.org/10.1016/j.chemolab.2005.12.001
23 https://doi.org/10.1016/j.chemolab.2009.01.006
24 https://doi.org/10.1016/s0003-2670(00)00994-6
25 https://doi.org/10.1016/s0003-2670(03)00354-4
26 https://doi.org/10.1016/s0003-2670(98)00542-x
27 https://doi.org/10.1016/s0003-2670(99)00442-0
28 https://doi.org/10.1016/s0097-8485(02)00014-1
29 https://doi.org/10.1016/s0097-8485(98)00002-3
30 https://doi.org/10.1016/s0169-7439(00)00080-0
31 https://doi.org/10.1016/s0169-7439(00)00112-x
32 https://doi.org/10.1016/s0169-7439(01)00141-1
33 https://doi.org/10.1016/s0169-7439(03)00007-8
34 https://doi.org/10.1016/s0169-7439(03)00008-x
35 https://doi.org/10.1016/s0169-7439(97)00062-2
36 https://doi.org/10.1016/s0169-7439(98)00173-7
37 https://doi.org/10.1021/ac00081a025
38 https://doi.org/10.1021/ac00219a013
39 https://doi.org/10.1021/ci960143y
40 https://doi.org/10.1021/ed052p642
41 https://doi.org/10.1021/ed065p599
42 https://doi.org/10.1021/j100071a016
43 https://doi.org/10.1021/j100314a024
44 https://doi.org/10.1021/j100884a016
45 https://doi.org/10.1021/ja01092a039
46 https://doi.org/10.1039/an9901500721
47 https://doi.org/10.1039/an9931800695
48 https://doi.org/10.1201/9781420018301
49 https://doi.org/10.1351/pac198153030753
50 https://doi.org/10.1351/pac199668010149
51 https://doi.org/10.1366/0003702011951281
52 schema:datePublished 2011-01
53 schema:datePublishedReg 2011-01-01
54 schema:description KINMODEL (AGDC) is a kinetic computational methodology that is valid for the treatment of any reaction mechanism and that allows the determination of different kinetic and non-kinetic parameters from the experimental data acquired by monitoring absorbance at one or several different wavelengths. It is a numerical computational model that can be applied to any reaction mechanism, with the advantage that on changing the treatment from one mechanism to another it is not necessary to modify even a single line of the program code since it automatically establishes and solves the set of differential rate equations. It is able to treat a broad set of reaction mechanisms in the individual and joint determination of the following groups of parameters (a) the individual rate constants of the different reaction mechanisms; (b) the values of the molar absorption coefficients (which are very valuable in the case of intermediate species and their identification) of all the species involved in the mechanism, and (c) the concentrations of the species participating in the mechanism. The program can be used by non-experts in the field and it is able to treat mechanisms involving ambiguities in the solutions and in the identification of parameters when kinetic constants and molar absorption coefficients are optimized together, and it allows a discrimination to be made between the possible mechanisms responsible for the course of the reaction after the residuals have been analyzed statistically, automatically choosing the one that best fits the kinetic data.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N048252d70a1543348bcda90f0ffdf177
59 Nea4350c336794adaa96e1cfb428d375e
60 sg:journal.1026076
61 schema:name KINMODEL (AGDC): a multipurpose computational method for kinetic treatment
62 schema:pagination 163-184
63 schema:productId N26ddf96f487c49839ab14fc5f53a0c19
64 N2953f1e51e984eee9fd385df965a8ce8
65 N3fa0502a6fce422aa894ab3c1d13548b
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004836929
67 https://doi.org/10.1007/s10910-010-9733-z
68 schema:sdDatePublished 2019-04-10T16:52
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nd2c45bcaf4c74733bd1e29b8e041cf20
71 schema:url http://link.springer.com/10.1007%2Fs10910-010-9733-z
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N048252d70a1543348bcda90f0ffdf177 schema:volumeNumber 49
76 rdf:type schema:PublicationVolume
77 N26ddf96f487c49839ab14fc5f53a0c19 schema:name readcube_id
78 schema:value 170c5ae551f76614fa578c504cec524d233f90925913e93f5102d6fce9e5545f
79 rdf:type schema:PropertyValue
80 N2953f1e51e984eee9fd385df965a8ce8 schema:name dimensions_id
81 schema:value pub.1004836929
82 rdf:type schema:PropertyValue
83 N3fa0502a6fce422aa894ab3c1d13548b schema:name doi
84 schema:value 10.1007/s10910-010-9733-z
85 rdf:type schema:PropertyValue
86 N91dc4188fe244efb935beb67f7add10b rdf:first sg:person.014702772705.74
87 rdf:rest Nc31b70a88d894f1c81355eca99d5905a
88 Nc31b70a88d894f1c81355eca99d5905a rdf:first sg:person.01064701655.93
89 rdf:rest rdf:nil
90 Nd2c45bcaf4c74733bd1e29b8e041cf20 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nea4350c336794adaa96e1cfb428d375e schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:journal.1026076 schema:issn 0259-9791
101 1572-8897
102 schema:name Journal of Mathematical Chemistry
103 rdf:type schema:Periodical
104 sg:person.01064701655.93 schema:affiliation https://www.grid.ac/institutes/grid.11762.33
105 schema:familyName González-Hernández
106 schema:givenName J. L.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064701655.93
108 rdf:type schema:Person
109 sg:person.014702772705.74 schema:affiliation https://www.grid.ac/institutes/grid.11762.33
110 schema:familyName Canedo
111 schema:givenName M. M.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702772705.74
113 rdf:type schema:Person
114 sg:pub.10.1007/bf01242655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005366218
115 https://doi.org/10.1007/bf01242655
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/cem.668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040588523
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/jcc.540120302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048355224
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/jps.2600810626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000246690
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/jps.2600821121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024263784
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/kin.20136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032461988
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/kin.550090404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004381650
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/kin.550100505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029973660
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/kin.550200107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021085309
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/recl.19650840506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019273291
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0039-9140(93)80091-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008744218
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0097-8485(87)85005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003316183
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0097-8485(90)80020-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029187885
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0097-8485(95)00068-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389938
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.aca.2007.02.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029064643
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.aca.2008.10.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042443897
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ces.2008.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003433519
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.chemolab.2005.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000455822
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.chemolab.2005.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050520149
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.chemolab.2009.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013544874
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0003-2670(00)00994-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001145772
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0003-2670(03)00354-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010350917
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0003-2670(98)00542-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032442958
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0003-2670(99)00442-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016250975
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0097-8485(02)00014-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029823348
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0097-8485(98)00002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036801043
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0169-7439(00)00080-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035049346
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0169-7439(00)00112-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015176531
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0169-7439(01)00141-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042603672
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0169-7439(03)00007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005477897
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0169-7439(03)00008-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015604375
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0169-7439(97)00062-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014976154
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0169-7439(98)00173-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028620920
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/ac00081a025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054970800
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/ac00219a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054981393
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/ci960143y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055405127
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/ed052p642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055449440
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/ed065p599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055457793
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/j100071a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055651776
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/j100314a024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055664135
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/j100884a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055684653
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/ja01092a039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055767466
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1039/an9901500721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005343919
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1039/an9931800695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014091490
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1201/9781420018301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109378425
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1351/pac198153030753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026367673
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1351/pac199668010149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018092918
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1366/0003702011951281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065255472
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.11762.33 schema:alternateName University of Salamanca
212 schema:name Department of Physical Chemistry, Faculty of Chemistry, University of Salamanca, Pza. de la Merced s/n, 37008, Salamanca, Spain
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...