Computing sparse and dense realizations of reaction kinetic systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02

AUTHORS

Gábor Szederkényi

ABSTRACT

A numerical procedure for finding the sparsest and densest realization of a given reaction network is proposed in this paper. The problem is formulated and solved in the framework of mixed integer linear programming (MILP) where the continuous optimization variables are the nonnegative reaction rate coefficients, and the corresponding integer variables ensure the finding of the realization with the minimal or maximal number of reactions. The mass-action kinetics is expressed in the form of linear constraints adjoining the optimization problem. More complex realization problems can also be solved using the proposed framework by modifying the objective function and/or the constraints appropriately. More... »

PAGES

551-568

References to SciGraph publications

  • 2008-07. Identifiability of chemical reaction networks in JOURNAL OF MATHEMATICAL CHEMISTRY
  • 1998-08. On local observability of chemical systems in JOURNAL OF MATHEMATICAL CHEMISTRY
  • 1994-12. The Clar number of a benzenoid hydrocarbon and linear programming in JOURNAL OF MATHEMATICAL CHEMISTRY
  • 1998-08. Local controllability of reactions in JOURNAL OF MATHEMATICAL CHEMISTRY
  • 2006-05. Alternative Integer-Linear-Programming Formulations of the Clar Problem in Hexagonal Systems in JOURNAL OF MATHEMATICAL CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10910-009-9525-5

    DOI

    http://dx.doi.org/10.1007/s10910-009-9525-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045140371


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "MTA Institute for Computer Science and Control", 
              "id": "https://www.grid.ac/institutes/grid.4836.9", 
              "name": [
                "Process Control Research Group, Systems and Control Laboratory, Computer and Automation Research Institute, Hungarian Academy of Sciences, P.O. Box 63, 1518, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szederk\u00e9nyi", 
            "givenName": "G\u00e1bor", 
            "id": "sg:person.012760224621.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760224621.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.0602767103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002189124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0009-2509(99)00028-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005582236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0305-0548(90)90062-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005761892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0305-0548(90)90062-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005761892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bbpc.19890931228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008196657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01277551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012462623", 
              "https://doi.org/10.1007/bf01277551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01277551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012462623", 
              "https://doi.org/10.1007/bf01277551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10910-005-9051-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012979588", 
              "https://doi.org/10.1007/s10910-005-9051-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10910-005-9051-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012979588", 
              "https://doi.org/10.1007/s10910-005-9051-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2509(88)87122-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016141484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10910-007-9307-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021306492", 
              "https://doi.org/10.1007/s10910-007-9307-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2509(87)80099-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022299040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crvi.2005.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030340116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0005-1098(98)00178-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030866692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ces.2002.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031012495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ces.2002.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031012495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0502269102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033386539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0098-1354(91)87007-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033626963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sysconle.2007.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037245845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0098-1354(93)e0010-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041293982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019158316600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042638468", 
              "https://doi.org/10.1023/a:1019158316600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044556069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044556069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0098-1354(92)85003-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045087211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2003.10.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047503556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019150014783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047530050", 
              "https://doi.org/10.1023/a:1019150014783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1350439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057697541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/9.935056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061246754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/050634177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062846335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036139904440278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062874995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s1064827502401953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062883967"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-02", 
        "datePublishedReg": "2010-02-01", 
        "description": "A numerical procedure for finding the sparsest and densest realization of a given reaction network is proposed in this paper. The problem is formulated and solved in the framework of mixed integer linear programming (MILP) where the continuous optimization variables are the nonnegative reaction rate coefficients, and the corresponding integer variables ensure the finding of the realization with the minimal or maximal number of reactions. The mass-action kinetics is expressed in the form of linear constraints adjoining the optimization problem. More complex realization problems can also be solved using the proposed framework by modifying the objective function and/or the constraints appropriately.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10910-009-9525-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1026076", 
            "issn": [
              "0259-9791", 
              "1572-8897"
            ], 
            "name": "Journal of Mathematical Chemistry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "name": "Computing sparse and dense realizations of reaction kinetic systems", 
        "pagination": "551-568", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d704d5d31f5426f8cb708e2a0b23f8083c1e7712f90d26855cbabbfb8072685c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10910-009-9525-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045140371"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10910-009-9525-5", 
          "https://app.dimensions.ai/details/publication/pub.1045140371"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000515.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10910-009-9525-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10910-009-9525-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10910-009-9525-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10910-009-9525-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10910-009-9525-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10910-009-9525-5 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N6c181658fe7e4da580632c7f4dc2bffd
    4 schema:citation sg:pub.10.1007/bf01277551
    5 sg:pub.10.1007/s10910-005-9051-z
    6 sg:pub.10.1007/s10910-007-9307-x
    7 sg:pub.10.1023/a:1019150014783
    8 sg:pub.10.1023/a:1019158316600
    9 https://doi.org/10.1002/bbpc.19890931228
    10 https://doi.org/10.1002/cpa.20131
    11 https://doi.org/10.1016/0009-2509(87)80099-4
    12 https://doi.org/10.1016/0009-2509(88)87122-7
    13 https://doi.org/10.1016/0098-1354(91)87007-v
    14 https://doi.org/10.1016/0098-1354(92)85003-q
    15 https://doi.org/10.1016/0098-1354(93)e0010-7
    16 https://doi.org/10.1016/0305-0548(90)90062-c
    17 https://doi.org/10.1016/j.ces.2002.12.001
    18 https://doi.org/10.1016/j.crvi.2005.09.005
    19 https://doi.org/10.1016/j.physa.2003.10.043
    20 https://doi.org/10.1016/j.sysconle.2007.12.003
    21 https://doi.org/10.1016/s0005-1098(98)00178-2
    22 https://doi.org/10.1016/s0009-2509(99)00028-7
    23 https://doi.org/10.1063/1.1350439
    24 https://doi.org/10.1073/pnas.0502269102
    25 https://doi.org/10.1073/pnas.0602767103
    26 https://doi.org/10.1109/9.935056
    27 https://doi.org/10.1137/050634177
    28 https://doi.org/10.1137/s0036139904440278
    29 https://doi.org/10.1137/s1064827502401953
    30 schema:datePublished 2010-02
    31 schema:datePublishedReg 2010-02-01
    32 schema:description A numerical procedure for finding the sparsest and densest realization of a given reaction network is proposed in this paper. The problem is formulated and solved in the framework of mixed integer linear programming (MILP) where the continuous optimization variables are the nonnegative reaction rate coefficients, and the corresponding integer variables ensure the finding of the realization with the minimal or maximal number of reactions. The mass-action kinetics is expressed in the form of linear constraints adjoining the optimization problem. More complex realization problems can also be solved using the proposed framework by modifying the objective function and/or the constraints appropriately.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf N3ea1b027ec124969ae44f013b8899761
    37 Nfdc09cf1f83d40549ece51f1584cb067
    38 sg:journal.1026076
    39 schema:name Computing sparse and dense realizations of reaction kinetic systems
    40 schema:pagination 551-568
    41 schema:productId N283b60a4972a413e8cf99d95fd3dfaa9
    42 N6276adcbdae34498aadb6177fd029620
    43 N78d6166414b44cbd8628506012388420
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045140371
    45 https://doi.org/10.1007/s10910-009-9525-5
    46 schema:sdDatePublished 2019-04-10T20:48
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Nea005c9913a542b48fae518e9a4e97ab
    49 schema:url http://link.springer.com/10.1007%2Fs10910-009-9525-5
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N283b60a4972a413e8cf99d95fd3dfaa9 schema:name readcube_id
    54 schema:value d704d5d31f5426f8cb708e2a0b23f8083c1e7712f90d26855cbabbfb8072685c
    55 rdf:type schema:PropertyValue
    56 N3ea1b027ec124969ae44f013b8899761 schema:issueNumber 2
    57 rdf:type schema:PublicationIssue
    58 N6276adcbdae34498aadb6177fd029620 schema:name doi
    59 schema:value 10.1007/s10910-009-9525-5
    60 rdf:type schema:PropertyValue
    61 N6c181658fe7e4da580632c7f4dc2bffd rdf:first sg:person.012760224621.12
    62 rdf:rest rdf:nil
    63 N78d6166414b44cbd8628506012388420 schema:name dimensions_id
    64 schema:value pub.1045140371
    65 rdf:type schema:PropertyValue
    66 Nea005c9913a542b48fae518e9a4e97ab schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Nfdc09cf1f83d40549ece51f1584cb067 schema:volumeNumber 47
    69 rdf:type schema:PublicationVolume
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Numerical and Computational Mathematics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1026076 schema:issn 0259-9791
    77 1572-8897
    78 schema:name Journal of Mathematical Chemistry
    79 rdf:type schema:Periodical
    80 sg:person.012760224621.12 schema:affiliation https://www.grid.ac/institutes/grid.4836.9
    81 schema:familyName Szederkényi
    82 schema:givenName Gábor
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760224621.12
    84 rdf:type schema:Person
    85 sg:pub.10.1007/bf01277551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012462623
    86 https://doi.org/10.1007/bf01277551
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/s10910-005-9051-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012979588
    89 https://doi.org/10.1007/s10910-005-9051-z
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s10910-007-9307-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021306492
    92 https://doi.org/10.1007/s10910-007-9307-x
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1023/a:1019150014783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047530050
    95 https://doi.org/10.1023/a:1019150014783
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1023/a:1019158316600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042638468
    98 https://doi.org/10.1023/a:1019158316600
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1002/bbpc.19890931228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008196657
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1002/cpa.20131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044556069
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/0009-2509(87)80099-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022299040
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/0009-2509(88)87122-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016141484
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/0098-1354(91)87007-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1033626963
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/0098-1354(92)85003-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1045087211
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/0098-1354(93)e0010-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041293982
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0305-0548(90)90062-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1005761892
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.ces.2002.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031012495
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.crvi.2005.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030340116
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.physa.2003.10.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047503556
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.sysconle.2007.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037245845
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0005-1098(98)00178-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030866692
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/s0009-2509(99)00028-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005582236
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1063/1.1350439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057697541
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1073/pnas.0502269102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033386539
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1073/pnas.0602767103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002189124
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/9.935056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061246754
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1137/050634177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846335
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1137/s0036139904440278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874995
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1137/s1064827502401953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883967
    141 rdf:type schema:CreativeWork
    142 https://www.grid.ac/institutes/grid.4836.9 schema:alternateName MTA Institute for Computer Science and Control
    143 schema:name Process Control Research Group, Systems and Control Laboratory, Computer and Automation Research Institute, Hungarian Academy of Sciences, P.O. Box 63, 1518, Budapest, Hungary
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...