Thermopower Evolution in Yb(Rh1-xCox)2Si2 Upon 4f Localization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-09

AUTHORS

U. Stockert, C. Klingner, C. Krellner, V. Zlatić, C. Geibel, F. Steglich

ABSTRACT

We present thermopower measurements on Yb(Rh1-xCox\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Rh}_{1-x}\hbox {Co}_x$$\end{document})2Si2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2\hbox {Si}_2$$\end{document}. Upon cobalt substitution, the Kondo temperature is decreasing and the single large thermopower minimum observed for YbRh2Si2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {YbRh}_2\hbox {Si}_2$$\end{document} splits into two minima. Simultaneously, the absolute thermopower values are strongly reduced due to a weaker exchange coupling between the 4f and the conduction electron states with increasing x. Pure YbCo2Si2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {YbCo}_2\hbox {Si}_2$$\end{document} is considered a stable trivalent system. Nevertheless, we still observe two minima in the thermopower indicative of weak residual Kondo scattering. This is in line with results from photoemission spectroscopy revealing a tiny contribution from Yb2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Yb}^{2+}$$\end{document}. The value at the high-T minimum in S(T) is found to be proportional to the Sommerfeld coefficient for the whole series. This unexpected finding is discussed in relation to recent measurements of the valence and Fermi surface evolution with temperature. More... »

PAGES

364-374

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10909-019-02187-6

DOI

http://dx.doi.org/10.1007/s10909-019-02187-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113330406


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MPI for Chemical Physics of Solids, D-01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MPI for Chemical Physics of Solids, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stockert", 
        "givenName": "U.", 
        "id": "sg:person.01004727103.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004727103.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MPI for Chemical Physics of Solids, D-01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MPI for Chemical Physics of Solids, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klingner", 
        "givenName": "C.", 
        "id": "sg:person.016135757021.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135757021.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physikalisches Institut, Johann Wolfgang Goethe-Universit\u00e4t, D-60438, Frankfurt am Main, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7839.5", 
          "name": [
            "Physikalisches Institut, Johann Wolfgang Goethe-Universit\u00e4t, D-60438, Frankfurt am Main, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krellner", 
        "givenName": "C.", 
        "id": "sg:person.0673212006.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673212006.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Faculty of Science, University of Split, HE-21000, Split, Croatia", 
          "id": "http://www.grid.ac/institutes/grid.38603.3e", 
          "name": [
            "Department of Physics, Faculty of Science, University of Split, HE-21000, Split, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zlati\u0107", 
        "givenName": "V.", 
        "id": "sg:person.013155201357.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013155201357.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MPI for Chemical Physics of Solids, D-01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MPI for Chemical Physics of Solids, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geibel", 
        "givenName": "C.", 
        "id": "sg:person.0626226403.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626226403.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Science, 100190, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "MPI for Chemical Physics of Solids, D-01187, Dresden, Germany", 
            "Center for Correlated Matter, Zhejiang University, 310058, Zhejiang, Hangzhou, People\u2019s Republic of China", 
            "Institute of Physics, Chinese Academy of Science, 100190, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steglich", 
        "givenName": "F.", 
        "id": "sg:person.01061214726.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41467-018-04438-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104018634", 
          "https://doi.org/10.1038/s41467-018-04438-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005740509", 
          "https://doi.org/10.1038/nature03129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-4268-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019121524", 
          "https://doi.org/10.1007/978-1-4613-4268-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027454082", 
          "https://doi.org/10.1038/nature01774"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-09", 
    "datePublishedReg": "2019-04-09", 
    "description": "We present thermopower measurements on Yb(Rh1-xCox\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {Rh}_{1-x}\\hbox {Co}_x$$\\end{document})2Si2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_2\\hbox {Si}_2$$\\end{document}. Upon cobalt substitution, the Kondo temperature is decreasing and the single large thermopower minimum observed for YbRh2Si2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {YbRh}_2\\hbox {Si}_2$$\\end{document} splits into two minima. Simultaneously, the absolute thermopower values are strongly reduced due to a weaker exchange coupling between the 4f and the conduction electron states with increasing x. Pure YbCo2Si2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {YbCo}_2\\hbox {Si}_2$$\\end{document} is considered a stable trivalent system. Nevertheless, we still observe two minima in the thermopower indicative of weak residual Kondo scattering. This is in line with results from photoemission spectroscopy revealing a tiny contribution from Yb2+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {Yb}^{2+}$$\\end{document}. The value at the high-T minimum in S(T) is found to be proportional to the Sommerfeld coefficient for the whole series. This unexpected finding is discussed in relation to recent measurements of the valence and Fermi surface evolution with temperature.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10909-019-02187-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "196"
      }
    ], 
    "keywords": [
      "photoemission spectroscopy", 
      "thermopower measurements", 
      "Kondo temperature", 
      "weak exchange coupling", 
      "exchange coupling", 
      "conduction electrons", 
      "Kondo scattering", 
      "Sommerfeld coefficient", 
      "recent measurements", 
      "tiny contribution", 
      "electrons", 
      "trivalent systems", 
      "scattering", 
      "Fermi", 
      "measurements", 
      "cobalt substitution", 
      "temperature", 
      "minimum", 
      "thermopower values", 
      "coupling", 
      "thermopower", 
      "spectroscopy", 
      "valence", 
      "evolution", 
      "Pure", 
      "coefficient", 
      "whole series", 
      "values", 
      "system", 
      "lines", 
      "contribution", 
      "localization", 
      "substitution", 
      "results", 
      "series", 
      "relation", 
      "unexpected finding", 
      "findings"
    ], 
    "name": "Thermopower Evolution in Yb(Rh1-xCox)2Si2 Upon 4f Localization", 
    "pagination": "364-374", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113330406"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10909-019-02187-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10909-019-02187-6", 
      "https://app.dimensions.ai/details/publication/pub.1113330406"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_807.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10909-019-02187-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02187-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02187-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02187-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02187-6'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      69 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10909-019-02187-6 schema:about anzsrc-for:01
2 anzsrc-for:0105
3 anzsrc-for:02
4 anzsrc-for:0203
5 anzsrc-for:0204
6 schema:author N006c15da4d414553a2b0bb921d95d7ae
7 schema:citation sg:pub.10.1007/978-1-4613-4268-7
8 sg:pub.10.1038/nature01774
9 sg:pub.10.1038/nature03129
10 sg:pub.10.1038/s41467-018-04438-8
11 schema:datePublished 2019-04-09
12 schema:datePublishedReg 2019-04-09
13 schema:description We present thermopower measurements on Yb(Rh1-xCox\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Rh}_{1-x}\hbox {Co}_x$$\end{document})2Si2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2\hbox {Si}_2$$\end{document}. Upon cobalt substitution, the Kondo temperature is decreasing and the single large thermopower minimum observed for YbRh2Si2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {YbRh}_2\hbox {Si}_2$$\end{document} splits into two minima. Simultaneously, the absolute thermopower values are strongly reduced due to a weaker exchange coupling between the 4f and the conduction electron states with increasing x. Pure YbCo2Si2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {YbCo}_2\hbox {Si}_2$$\end{document} is considered a stable trivalent system. Nevertheless, we still observe two minima in the thermopower indicative of weak residual Kondo scattering. This is in line with results from photoemission spectroscopy revealing a tiny contribution from Yb2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Yb}^{2+}$$\end{document}. The value at the high-T minimum in S(T) is found to be proportional to the Sommerfeld coefficient for the whole series. This unexpected finding is discussed in relation to recent measurements of the valence and Fermi surface evolution with temperature.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N23b15fbcc8a14e9d8c298225b2ee57bb
17 N625a631417b24ff788c3a301aeaecba7
18 sg:journal.1030474
19 schema:keywords Fermi
20 Kondo scattering
21 Kondo temperature
22 Pure
23 Sommerfeld coefficient
24 cobalt substitution
25 coefficient
26 conduction electrons
27 contribution
28 coupling
29 electrons
30 evolution
31 exchange coupling
32 findings
33 lines
34 localization
35 measurements
36 minimum
37 photoemission spectroscopy
38 recent measurements
39 relation
40 results
41 scattering
42 series
43 spectroscopy
44 substitution
45 system
46 temperature
47 thermopower
48 thermopower measurements
49 thermopower values
50 tiny contribution
51 trivalent systems
52 unexpected finding
53 valence
54 values
55 weak exchange coupling
56 whole series
57 schema:name Thermopower Evolution in Yb(Rh1-xCox)2Si2 Upon 4f Localization
58 schema:pagination 364-374
59 schema:productId N72c111f919d34b378c6ee3e9232ccd74
60 N8955f52122a84d3ca5ffaa273ea994c9
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113330406
62 https://doi.org/10.1007/s10909-019-02187-6
63 schema:sdDatePublished 2022-10-01T06:45
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N45e99720cf0341c1904df1ba7e8a3ae7
66 schema:url https://doi.org/10.1007/s10909-019-02187-6
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N006c15da4d414553a2b0bb921d95d7ae rdf:first sg:person.01004727103.34
71 rdf:rest N47471da5969d4168aa1686af2c15c340
72 N113a0c9731da4f8b93e45b65f2253a7f rdf:first sg:person.01061214726.76
73 rdf:rest rdf:nil
74 N203bfa0c113e4ce0947d266def5ce6c5 rdf:first sg:person.0673212006.28
75 rdf:rest Nf0ba16a554b34c168296339a845c312a
76 N23b15fbcc8a14e9d8c298225b2ee57bb schema:issueNumber 3-4
77 rdf:type schema:PublicationIssue
78 N45e99720cf0341c1904df1ba7e8a3ae7 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N47471da5969d4168aa1686af2c15c340 rdf:first sg:person.016135757021.37
81 rdf:rest N203bfa0c113e4ce0947d266def5ce6c5
82 N625a631417b24ff788c3a301aeaecba7 schema:volumeNumber 196
83 rdf:type schema:PublicationVolume
84 N72c111f919d34b378c6ee3e9232ccd74 schema:name dimensions_id
85 schema:value pub.1113330406
86 rdf:type schema:PropertyValue
87 N8955f52122a84d3ca5ffaa273ea994c9 schema:name doi
88 schema:value 10.1007/s10909-019-02187-6
89 rdf:type schema:PropertyValue
90 Nd8c2cbb756cb451ab75352c9ed049190 rdf:first sg:person.0626226403.97
91 rdf:rest N113a0c9731da4f8b93e45b65f2253a7f
92 Nf0ba16a554b34c168296339a845c312a rdf:first sg:person.013155201357.28
93 rdf:rest Nd8c2cbb756cb451ab75352c9ed049190
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Physics
99 rdf:type schema:DefinedTerm
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
104 schema:name Classical Physics
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
107 schema:name Condensed Matter Physics
108 rdf:type schema:DefinedTerm
109 sg:journal.1030474 schema:issn 0022-2291
110 1573-7357
111 schema:name Journal of Low Temperature Physics
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.01004727103.34 schema:affiliation grid-institutes:None
115 schema:familyName Stockert
116 schema:givenName U.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004727103.34
118 rdf:type schema:Person
119 sg:person.01061214726.76 schema:affiliation grid-institutes:grid.458438.6
120 schema:familyName Steglich
121 schema:givenName F.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76
123 rdf:type schema:Person
124 sg:person.013155201357.28 schema:affiliation grid-institutes:grid.38603.3e
125 schema:familyName Zlatić
126 schema:givenName V.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013155201357.28
128 rdf:type schema:Person
129 sg:person.016135757021.37 schema:affiliation grid-institutes:None
130 schema:familyName Klingner
131 schema:givenName C.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135757021.37
133 rdf:type schema:Person
134 sg:person.0626226403.97 schema:affiliation grid-institutes:None
135 schema:familyName Geibel
136 schema:givenName C.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626226403.97
138 rdf:type schema:Person
139 sg:person.0673212006.28 schema:affiliation grid-institutes:grid.7839.5
140 schema:familyName Krellner
141 schema:givenName C.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673212006.28
143 rdf:type schema:Person
144 sg:pub.10.1007/978-1-4613-4268-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019121524
145 https://doi.org/10.1007/978-1-4613-4268-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature01774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027454082
148 https://doi.org/10.1038/nature01774
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature03129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005740509
151 https://doi.org/10.1038/nature03129
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/s41467-018-04438-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104018634
154 https://doi.org/10.1038/s41467-018-04438-8
155 rdf:type schema:CreativeWork
156 grid-institutes:None schema:alternateName MPI for Chemical Physics of Solids, D-01187, Dresden, Germany
157 schema:name MPI for Chemical Physics of Solids, D-01187, Dresden, Germany
158 rdf:type schema:Organization
159 grid-institutes:grid.38603.3e schema:alternateName Department of Physics, Faculty of Science, University of Split, HE-21000, Split, Croatia
160 schema:name Department of Physics, Faculty of Science, University of Split, HE-21000, Split, Croatia
161 rdf:type schema:Organization
162 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Science, 100190, Beijing, People’s Republic of China
163 schema:name Center for Correlated Matter, Zhejiang University, 310058, Zhejiang, Hangzhou, People’s Republic of China
164 Institute of Physics, Chinese Academy of Science, 100190, Beijing, People’s Republic of China
165 MPI for Chemical Physics of Solids, D-01187, Dresden, Germany
166 rdf:type schema:Organization
167 grid-institutes:grid.7839.5 schema:alternateName Physikalisches Institut, Johann Wolfgang Goethe-Universität, D-60438, Frankfurt am Main, Germany
168 schema:name Physikalisches Institut, Johann Wolfgang Goethe-Universität, D-60438, Frankfurt am Main, Germany
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...