Possibility of the Higher Critical Temperature on MgB2 Superconductor Synthesized by Powder-In-Sealed-Tube Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

A. Imaduddin, S. D. Yudanto, M. E. H. Rasyadi, Y. Nakanishi, M. Yoshizawa

ABSTRACT

MgB2 is a metal compound superconductor which has critical temperature value ~ 39 K. The critical temperature of MgB2 superconducting wire is higher than Nb-based superconductor, NbTi and Nb3Sn. It is a promising superconductor to replace the Nb-based superconductor that has been applied as a widely used superconducting wire. The aim of this study is to synthesize MgB2 superconductor with the various amount of Mg element using powder-in-sealed-tube method. Mg and B powders were mixed, grounded and poured into stainless steel SS304 tube. As-mixed powder was then heated at 800 C for 2 h in standard air ambient inside a sealed tube. After that, the crystal structures, surface morphology and resistivity versus temperature of all samples were characterized using X-ray diffraction (XRD), scanning electron microscopy and cryogenic system, respectively. Based on the result of XRD, the majority of MgB2 phase was formed even though there were slightly small amount of B2O phases. The critical temperature (Tc) onset of MgB2 with the addition of 0, − 5, − 10, 5 and 10 wt% Mg was calculated 42.03; 42.25; 42; and 41.8 K, accordingly. These critical temperature values are relatively higher than other studies among this type of superconductors. And then, to study the grinding effect, one of the as-calcined pellets was ground and pressed to form bulk sample again. TC,onset and TC,zero of this sample were decreased 3 and 18 K, respectively. More... »

PAGES

1-14

References to SciGraph publications

  • 2001-03. Superconductivity at 39 K in magnesium diboride in NATURE
  • 2002-05. Preparation and characterization of MgB2 superconductor in PRAMANA
  • 2015-09. The Effects of Excess Mg Addition on the Superconductivity of MgB2 in JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM
  • 2010-07. Sintering mechanism of Ag-doped MgB2 superconductor from low temperature to high temperature in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2014-03. Electrical and Magnetic Behaviour of PrFeAsOF Superconductor in JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9

    DOI

    http://dx.doi.org/10.1007/s10909-019-02184-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113052537


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indonesian Institute of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.249566.a", 
              "name": [
                "Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek Gd. 470, 15314, Tangerang Selatan, Banten, Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Imaduddin", 
            "givenName": "A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indonesian Institute of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.249566.a", 
              "name": [
                "Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek Gd. 470, 15314, Tangerang Selatan, Banten, Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yudanto", 
            "givenName": "S. D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sepuluh Nopember Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.444380.f", 
              "name": [
                "Department of Physics Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS, Jl. Raya ITS, Keputih, Sukolilo, 60111, Surabaya, Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rasyadi", 
            "givenName": "M. E. H.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iwate University", 
              "id": "https://www.grid.ac/institutes/grid.411792.8", 
              "name": [
                "Graduate School of Arts and Science, Iwate University, 3-18-8 Ueda, 020-8551, Morioka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakanishi", 
            "givenName": "Y.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iwate University", 
              "id": "https://www.grid.ac/institutes/grid.411792.8", 
              "name": [
                "Graduate School of Arts and Science, Iwate University, 3-18-8 Ueda, 020-8551, Morioka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoshizawa", 
            "givenName": "M.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0921-4534(02)01842-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005703328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(02)01842-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005703328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/23/2/025005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007147112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/23/2/025005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007147112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jallcom.2008.03.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007189538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1517398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011659819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matchemphys.2015.08.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012687037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physc.2014.12.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013084155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.2423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013327508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.2423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013327508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/21/3/035006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013789672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10948-015-3120-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014595421", 
              "https://doi.org/10.1007/s10948-015-3120-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(01)00913-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017215721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1479470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024567548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2016.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027788251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-009-9974-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032718201", 
              "https://doi.org/10.1007/s10854-009-9974-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-009-9974-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032718201", 
              "https://doi.org/10.1007/s10854-009-9974-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10948-013-2358-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039512773", 
              "https://doi.org/10.1007/s10948-013-2358-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(02)01334-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040574412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physc.2009.05.190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042849461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/14/44/345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043617498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12043-002-0184-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045629775", 
              "https://doi.org/10.1007/s12043-002-0184-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.200700254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049126249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.200700254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049126249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.200700254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049126249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052666736", 
              "https://doi.org/10.1038/35065039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052666736", 
              "https://doi.org/10.1038/35065039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4790802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058069188"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-28", 
        "datePublishedReg": "2019-03-28", 
        "description": "MgB2 is a metal compound superconductor which has critical temperature value ~ 39 K. The critical temperature of MgB2 superconducting wire is higher than Nb-based superconductor, NbTi and Nb3Sn. It is a promising superconductor to replace the Nb-based superconductor that has been applied as a widely used superconducting wire. The aim of this study is to synthesize MgB2 superconductor with the various amount of Mg element using powder-in-sealed-tube method. Mg and B powders were mixed, grounded and poured into stainless steel SS304 tube. As-mixed powder was then heated at 800 C for 2 h in standard air ambient inside a sealed tube. After that, the crystal structures, surface morphology and resistivity versus temperature of all samples were characterized using X-ray diffraction (XRD), scanning electron microscopy and cryogenic system, respectively. Based on the result of XRD, the majority of MgB2 phase was formed even though there were slightly small amount of B2O phases. The critical temperature (Tc) onset of MgB2 with the addition of 0, \u2212 5, \u2212 10, 5 and 10 wt% Mg was calculated 42.03; 42.25; 42; and 41.8 K, accordingly. These critical temperature values are relatively higher than other studies among this type of superconductors. And then, to study the grinding effect, one of the as-calcined pellets was ground and pressed to form bulk sample again. TC,onset and TC,zero of this sample were decreased 3 and 18 K, respectively.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10909-019-02184-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1030474", 
            "issn": [
              "0022-2291", 
              "1573-7357"
            ], 
            "name": "Journal of Low Temperature Physics", 
            "type": "Periodical"
          }
        ], 
        "name": "Possibility of the Higher Critical Temperature on MgB2 Superconductor Synthesized by Powder-In-Sealed-Tube Method", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3f029d59cabf92e81f6d3eaac97d47c43407b6a6e6c7f4f410222504f1637c3f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10909-019-02184-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113052537"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10909-019-02184-9", 
          "https://app.dimensions.ai/details/publication/pub.1113052537"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78965_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10909-019-02184-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      21 PREDICATES      45 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10909-019-02184-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nb72886fad7d2497683762a475b486154
    4 schema:citation sg:pub.10.1007/s10854-009-9974-4
    5 sg:pub.10.1007/s10948-013-2358-2
    6 sg:pub.10.1007/s10948-015-3120-8
    7 sg:pub.10.1007/s12043-002-0184-3
    8 sg:pub.10.1038/35065039
    9 https://doi.org/10.1002/adfm.200700254
    10 https://doi.org/10.1016/j.jallcom.2008.03.056
    11 https://doi.org/10.1016/j.matchemphys.2015.08.019
    12 https://doi.org/10.1016/j.physc.2009.05.190
    13 https://doi.org/10.1016/j.physc.2014.12.009
    14 https://doi.org/10.1016/j.scriptamat.2016.07.019
    15 https://doi.org/10.1016/s0921-4534(01)00913-3
    16 https://doi.org/10.1016/s0921-4534(02)01334-5
    17 https://doi.org/10.1016/s0921-4534(02)01842-7
    18 https://doi.org/10.1063/1.1479470
    19 https://doi.org/10.1063/1.1517398
    20 https://doi.org/10.1063/1.4790802
    21 https://doi.org/10.1088/0953-2048/21/3/035006
    22 https://doi.org/10.1088/0953-2048/23/2/025005
    23 https://doi.org/10.1088/0953-8984/14/44/345
    24 https://doi.org/10.1103/physrevlett.86.2423
    25 schema:datePublished 2019-03-28
    26 schema:datePublishedReg 2019-03-28
    27 schema:description MgB2 is a metal compound superconductor which has critical temperature value ~ 39 K. The critical temperature of MgB2 superconducting wire is higher than Nb-based superconductor, NbTi and Nb3Sn. It is a promising superconductor to replace the Nb-based superconductor that has been applied as a widely used superconducting wire. The aim of this study is to synthesize MgB2 superconductor with the various amount of Mg element using powder-in-sealed-tube method. Mg and B powders were mixed, grounded and poured into stainless steel SS304 tube. As-mixed powder was then heated at 800 C for 2 h in standard air ambient inside a sealed tube. After that, the crystal structures, surface morphology and resistivity versus temperature of all samples were characterized using X-ray diffraction (XRD), scanning electron microscopy and cryogenic system, respectively. Based on the result of XRD, the majority of MgB2 phase was formed even though there were slightly small amount of B2O phases. The critical temperature (Tc) onset of MgB2 with the addition of 0, − 5, − 10, 5 and 10 wt% Mg was calculated 42.03; 42.25; 42; and 41.8 K, accordingly. These critical temperature values are relatively higher than other studies among this type of superconductors. And then, to study the grinding effect, one of the as-calcined pellets was ground and pressed to form bulk sample again. TC,onset and TC,zero of this sample were decreased 3 and 18 K, respectively.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf sg:journal.1030474
    32 schema:name Possibility of the Higher Critical Temperature on MgB2 Superconductor Synthesized by Powder-In-Sealed-Tube Method
    33 schema:pagination 1-14
    34 schema:productId N2e300a66efb34cf9868afeb4892aa244
    35 N5fd8f2ffd45e4f0bb869569d9e2a5d1e
    36 N8c1b85246454495bbe432bb2d4f52fdf
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113052537
    38 https://doi.org/10.1007/s10909-019-02184-9
    39 schema:sdDatePublished 2019-04-11T13:20
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Nc18c6a2ff08e4112b45485aa09684c75
    42 schema:url https://link.springer.com/10.1007%2Fs10909-019-02184-9
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N07027cb8f1ad467dba763378e0431e4e rdf:first N4a06c0f51a8847a695bbfa9b101f5524
    47 rdf:rest N123060603e8c48d8b75dc3f4e78441e6
    48 N123060603e8c48d8b75dc3f4e78441e6 rdf:first N7f7b5d6cd6a641f3940c640b57ad6bf5
    49 rdf:rest Nca5e7476315f494ea23b65d30d7f917a
    50 N2e300a66efb34cf9868afeb4892aa244 schema:name doi
    51 schema:value 10.1007/s10909-019-02184-9
    52 rdf:type schema:PropertyValue
    53 N482984cc401a4f4f89fed7d315c7407b schema:affiliation https://www.grid.ac/institutes/grid.411792.8
    54 schema:familyName Yoshizawa
    55 schema:givenName M.
    56 rdf:type schema:Person
    57 N4a06c0f51a8847a695bbfa9b101f5524 schema:affiliation https://www.grid.ac/institutes/grid.444380.f
    58 schema:familyName Rasyadi
    59 schema:givenName M. E. H.
    60 rdf:type schema:Person
    61 N5fd8f2ffd45e4f0bb869569d9e2a5d1e schema:name dimensions_id
    62 schema:value pub.1113052537
    63 rdf:type schema:PropertyValue
    64 N7f7b5d6cd6a641f3940c640b57ad6bf5 schema:affiliation https://www.grid.ac/institutes/grid.411792.8
    65 schema:familyName Nakanishi
    66 schema:givenName Y.
    67 rdf:type schema:Person
    68 N8c1b85246454495bbe432bb2d4f52fdf schema:name readcube_id
    69 schema:value 3f029d59cabf92e81f6d3eaac97d47c43407b6a6e6c7f4f410222504f1637c3f
    70 rdf:type schema:PropertyValue
    71 Nb667ac1e546d45ac83f206c46ba1dad8 rdf:first Ne67b6e8b0eb74285b70f92875831ea0f
    72 rdf:rest N07027cb8f1ad467dba763378e0431e4e
    73 Nb72886fad7d2497683762a475b486154 rdf:first Ne27af39377804d4c881d3d4b6592ea3d
    74 rdf:rest Nb667ac1e546d45ac83f206c46ba1dad8
    75 Nc18c6a2ff08e4112b45485aa09684c75 schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 Nca5e7476315f494ea23b65d30d7f917a rdf:first N482984cc401a4f4f89fed7d315c7407b
    78 rdf:rest rdf:nil
    79 Ne27af39377804d4c881d3d4b6592ea3d schema:affiliation https://www.grid.ac/institutes/grid.249566.a
    80 schema:familyName Imaduddin
    81 schema:givenName A.
    82 rdf:type schema:Person
    83 Ne67b6e8b0eb74285b70f92875831ea0f schema:affiliation https://www.grid.ac/institutes/grid.249566.a
    84 schema:familyName Yudanto
    85 schema:givenName S. D.
    86 rdf:type schema:Person
    87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Engineering
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Materials Engineering
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1030474 schema:issn 0022-2291
    94 1573-7357
    95 schema:name Journal of Low Temperature Physics
    96 rdf:type schema:Periodical
    97 sg:pub.10.1007/s10854-009-9974-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032718201
    98 https://doi.org/10.1007/s10854-009-9974-4
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10948-013-2358-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039512773
    101 https://doi.org/10.1007/s10948-013-2358-2
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10948-015-3120-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014595421
    104 https://doi.org/10.1007/s10948-015-3120-8
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s12043-002-0184-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045629775
    107 https://doi.org/10.1007/s12043-002-0184-3
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/35065039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052666736
    110 https://doi.org/10.1038/35065039
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/adfm.200700254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049126249
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.jallcom.2008.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007189538
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.matchemphys.2015.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012687037
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.physc.2009.05.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042849461
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.physc.2014.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013084155
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.scriptamat.2016.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027788251
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0921-4534(01)00913-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017215721
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/s0921-4534(02)01334-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040574412
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/s0921-4534(02)01842-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005703328
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1063/1.1479470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024567548
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1063/1.1517398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011659819
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1063/1.4790802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058069188
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1088/0953-2048/21/3/035006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013789672
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1088/0953-2048/23/2/025005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007147112
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1088/0953-8984/14/44/345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043617498
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevlett.86.2423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013327508
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.249566.a schema:alternateName Indonesian Institute of Sciences
    145 schema:name Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek Gd. 470, 15314, Tangerang Selatan, Banten, Indonesia
    146 rdf:type schema:Organization
    147 https://www.grid.ac/institutes/grid.411792.8 schema:alternateName Iwate University
    148 schema:name Graduate School of Arts and Science, Iwate University, 3-18-8 Ueda, 020-8551, Morioka, Japan
    149 rdf:type schema:Organization
    150 https://www.grid.ac/institutes/grid.444380.f schema:alternateName Sepuluh Nopember Institute of Technology
    151 schema:name Department of Physics Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS, Jl. Raya ITS, Keputih, Sukolilo, 60111, Surabaya, Indonesia
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...