Possibility of the Higher Critical Temperature on MgB2 Superconductor Synthesized by Powder-In-Sealed-Tube Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

A. Imaduddin, S. D. Yudanto, M. E. H. Rasyadi, Y. Nakanishi, M. Yoshizawa

ABSTRACT

MgB2 is a metal compound superconductor which has critical temperature value ~ 39 K. The critical temperature of MgB2 superconducting wire is higher than Nb-based superconductor, NbTi and Nb3Sn. It is a promising superconductor to replace the Nb-based superconductor that has been applied as a widely used superconducting wire. The aim of this study is to synthesize MgB2 superconductor with the various amount of Mg element using powder-in-sealed-tube method. Mg and B powders were mixed, grounded and poured into stainless steel SS304 tube. As-mixed powder was then heated at 800 C for 2 h in standard air ambient inside a sealed tube. After that, the crystal structures, surface morphology and resistivity versus temperature of all samples were characterized using X-ray diffraction (XRD), scanning electron microscopy and cryogenic system, respectively. Based on the result of XRD, the majority of MgB2 phase was formed even though there were slightly small amount of B2O phases. The critical temperature (Tc) onset of MgB2 with the addition of 0, − 5, − 10, 5 and 10 wt% Mg was calculated 42.03; 42.25; 42; and 41.8 K, accordingly. These critical temperature values are relatively higher than other studies among this type of superconductors. And then, to study the grinding effect, one of the as-calcined pellets was ground and pressed to form bulk sample again. TC,onset and TC,zero of this sample were decreased 3 and 18 K, respectively. More... »

PAGES

1-14

References to SciGraph publications

  • 2001-03. Superconductivity at 39 K in magnesium diboride in NATURE
  • 2002-05. Preparation and characterization of MgB2 superconductor in PRAMANA
  • 2015-09. The Effects of Excess Mg Addition on the Superconductivity of MgB2 in JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM
  • 2010-07. Sintering mechanism of Ag-doped MgB2 superconductor from low temperature to high temperature in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2014-03. Electrical and Magnetic Behaviour of PrFeAsOF Superconductor in JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9

    DOI

    http://dx.doi.org/10.1007/s10909-019-02184-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113052537


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indonesian Institute of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.249566.a", 
              "name": [
                "Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek Gd. 470, 15314, Tangerang Selatan, Banten, Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Imaduddin", 
            "givenName": "A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indonesian Institute of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.249566.a", 
              "name": [
                "Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek Gd. 470, 15314, Tangerang Selatan, Banten, Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yudanto", 
            "givenName": "S. D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sepuluh Nopember Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.444380.f", 
              "name": [
                "Department of Physics Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS, Jl. Raya ITS, Keputih, Sukolilo, 60111, Surabaya, Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rasyadi", 
            "givenName": "M. E. H.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iwate University", 
              "id": "https://www.grid.ac/institutes/grid.411792.8", 
              "name": [
                "Graduate School of Arts and Science, Iwate University, 3-18-8 Ueda, 020-8551, Morioka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakanishi", 
            "givenName": "Y.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iwate University", 
              "id": "https://www.grid.ac/institutes/grid.411792.8", 
              "name": [
                "Graduate School of Arts and Science, Iwate University, 3-18-8 Ueda, 020-8551, Morioka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoshizawa", 
            "givenName": "M.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0921-4534(02)01842-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005703328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(02)01842-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005703328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/23/2/025005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007147112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/23/2/025005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007147112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jallcom.2008.03.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007189538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1517398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011659819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matchemphys.2015.08.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012687037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physc.2014.12.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013084155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.2423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013327508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.2423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013327508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/21/3/035006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013789672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10948-015-3120-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014595421", 
              "https://doi.org/10.1007/s10948-015-3120-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(01)00913-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017215721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1479470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024567548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2016.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027788251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-009-9974-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032718201", 
              "https://doi.org/10.1007/s10854-009-9974-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-009-9974-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032718201", 
              "https://doi.org/10.1007/s10854-009-9974-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10948-013-2358-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039512773", 
              "https://doi.org/10.1007/s10948-013-2358-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(02)01334-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040574412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physc.2009.05.190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042849461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/14/44/345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043617498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12043-002-0184-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045629775", 
              "https://doi.org/10.1007/s12043-002-0184-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.200700254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049126249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.200700254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049126249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.200700254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049126249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052666736", 
              "https://doi.org/10.1038/35065039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052666736", 
              "https://doi.org/10.1038/35065039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4790802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058069188"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-28", 
        "datePublishedReg": "2019-03-28", 
        "description": "MgB2 is a metal compound superconductor which has critical temperature value ~ 39 K. The critical temperature of MgB2 superconducting wire is higher than Nb-based superconductor, NbTi and Nb3Sn. It is a promising superconductor to replace the Nb-based superconductor that has been applied as a widely used superconducting wire. The aim of this study is to synthesize MgB2 superconductor with the various amount of Mg element using powder-in-sealed-tube method. Mg and B powders were mixed, grounded and poured into stainless steel SS304 tube. As-mixed powder was then heated at 800 C for 2 h in standard air ambient inside a sealed tube. After that, the crystal structures, surface morphology and resistivity versus temperature of all samples were characterized using X-ray diffraction (XRD), scanning electron microscopy and cryogenic system, respectively. Based on the result of XRD, the majority of MgB2 phase was formed even though there were slightly small amount of B2O phases. The critical temperature (Tc) onset of MgB2 with the addition of 0, \u2212 5, \u2212 10, 5 and 10 wt% Mg was calculated 42.03; 42.25; 42; and 41.8 K, accordingly. These critical temperature values are relatively higher than other studies among this type of superconductors. And then, to study the grinding effect, one of the as-calcined pellets was ground and pressed to form bulk sample again. TC,onset and TC,zero of this sample were decreased 3 and 18 K, respectively.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10909-019-02184-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1030474", 
            "issn": [
              "0022-2291", 
              "1573-7357"
            ], 
            "name": "Journal of Low Temperature Physics", 
            "type": "Periodical"
          }
        ], 
        "name": "Possibility of the Higher Critical Temperature on MgB2 Superconductor Synthesized by Powder-In-Sealed-Tube Method", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3f029d59cabf92e81f6d3eaac97d47c43407b6a6e6c7f4f410222504f1637c3f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10909-019-02184-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113052537"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10909-019-02184-9", 
          "https://app.dimensions.ai/details/publication/pub.1113052537"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78965_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10909-019-02184-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02184-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      21 PREDICATES      45 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10909-019-02184-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N9aa637dc06d94a84a5204327f0d3114c
    4 schema:citation sg:pub.10.1007/s10854-009-9974-4
    5 sg:pub.10.1007/s10948-013-2358-2
    6 sg:pub.10.1007/s10948-015-3120-8
    7 sg:pub.10.1007/s12043-002-0184-3
    8 sg:pub.10.1038/35065039
    9 https://doi.org/10.1002/adfm.200700254
    10 https://doi.org/10.1016/j.jallcom.2008.03.056
    11 https://doi.org/10.1016/j.matchemphys.2015.08.019
    12 https://doi.org/10.1016/j.physc.2009.05.190
    13 https://doi.org/10.1016/j.physc.2014.12.009
    14 https://doi.org/10.1016/j.scriptamat.2016.07.019
    15 https://doi.org/10.1016/s0921-4534(01)00913-3
    16 https://doi.org/10.1016/s0921-4534(02)01334-5
    17 https://doi.org/10.1016/s0921-4534(02)01842-7
    18 https://doi.org/10.1063/1.1479470
    19 https://doi.org/10.1063/1.1517398
    20 https://doi.org/10.1063/1.4790802
    21 https://doi.org/10.1088/0953-2048/21/3/035006
    22 https://doi.org/10.1088/0953-2048/23/2/025005
    23 https://doi.org/10.1088/0953-8984/14/44/345
    24 https://doi.org/10.1103/physrevlett.86.2423
    25 schema:datePublished 2019-03-28
    26 schema:datePublishedReg 2019-03-28
    27 schema:description MgB2 is a metal compound superconductor which has critical temperature value ~ 39 K. The critical temperature of MgB2 superconducting wire is higher than Nb-based superconductor, NbTi and Nb3Sn. It is a promising superconductor to replace the Nb-based superconductor that has been applied as a widely used superconducting wire. The aim of this study is to synthesize MgB2 superconductor with the various amount of Mg element using powder-in-sealed-tube method. Mg and B powders were mixed, grounded and poured into stainless steel SS304 tube. As-mixed powder was then heated at 800 C for 2 h in standard air ambient inside a sealed tube. After that, the crystal structures, surface morphology and resistivity versus temperature of all samples were characterized using X-ray diffraction (XRD), scanning electron microscopy and cryogenic system, respectively. Based on the result of XRD, the majority of MgB2 phase was formed even though there were slightly small amount of B2O phases. The critical temperature (Tc) onset of MgB2 with the addition of 0, − 5, − 10, 5 and 10 wt% Mg was calculated 42.03; 42.25; 42; and 41.8 K, accordingly. These critical temperature values are relatively higher than other studies among this type of superconductors. And then, to study the grinding effect, one of the as-calcined pellets was ground and pressed to form bulk sample again. TC,onset and TC,zero of this sample were decreased 3 and 18 K, respectively.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf sg:journal.1030474
    32 schema:name Possibility of the Higher Critical Temperature on MgB2 Superconductor Synthesized by Powder-In-Sealed-Tube Method
    33 schema:pagination 1-14
    34 schema:productId N445ea4045ba04a7c8e645732c880cac6
    35 N576ae22eecda454082222f687f665ea4
    36 Nb0ab18652fcd442d8a90730969d32eeb
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113052537
    38 https://doi.org/10.1007/s10909-019-02184-9
    39 schema:sdDatePublished 2019-04-11T13:20
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N74fd1ee97ba04096a9195c426b7e04c0
    42 schema:url https://link.springer.com/10.1007%2Fs10909-019-02184-9
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N0f9df7b5332d4b35b01d5169164c215e schema:affiliation https://www.grid.ac/institutes/grid.411792.8
    47 schema:familyName Yoshizawa
    48 schema:givenName M.
    49 rdf:type schema:Person
    50 N2551f11c6db94bff9724333486a69351 rdf:first N5e8f6e7714974c538bd4d6a2e2dbe923
    51 rdf:rest Nd6afcdf195574d1a8083d406ee5a4621
    52 N3beef163b6db4a0386ad8464329f8436 schema:affiliation https://www.grid.ac/institutes/grid.444380.f
    53 schema:familyName Rasyadi
    54 schema:givenName M. E. H.
    55 rdf:type schema:Person
    56 N445ea4045ba04a7c8e645732c880cac6 schema:name doi
    57 schema:value 10.1007/s10909-019-02184-9
    58 rdf:type schema:PropertyValue
    59 N4afabcc7a6474f0a8b0204b89269ac35 rdf:first N723669953bfb40f6a4fb182cafe8e5ee
    60 rdf:rest Na0adefc694de4f39b3c3d7738b04a5fa
    61 N576ae22eecda454082222f687f665ea4 schema:name readcube_id
    62 schema:value 3f029d59cabf92e81f6d3eaac97d47c43407b6a6e6c7f4f410222504f1637c3f
    63 rdf:type schema:PropertyValue
    64 N5e8f6e7714974c538bd4d6a2e2dbe923 schema:affiliation https://www.grid.ac/institutes/grid.249566.a
    65 schema:familyName Yudanto
    66 schema:givenName S. D.
    67 rdf:type schema:Person
    68 N723669953bfb40f6a4fb182cafe8e5ee schema:affiliation https://www.grid.ac/institutes/grid.411792.8
    69 schema:familyName Nakanishi
    70 schema:givenName Y.
    71 rdf:type schema:Person
    72 N74fd1ee97ba04096a9195c426b7e04c0 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N9aa637dc06d94a84a5204327f0d3114c rdf:first Ne6c8e5f166f9472a9cc97a2eba64be29
    75 rdf:rest N2551f11c6db94bff9724333486a69351
    76 Na0adefc694de4f39b3c3d7738b04a5fa rdf:first N0f9df7b5332d4b35b01d5169164c215e
    77 rdf:rest rdf:nil
    78 Nb0ab18652fcd442d8a90730969d32eeb schema:name dimensions_id
    79 schema:value pub.1113052537
    80 rdf:type schema:PropertyValue
    81 Nd6afcdf195574d1a8083d406ee5a4621 rdf:first N3beef163b6db4a0386ad8464329f8436
    82 rdf:rest N4afabcc7a6474f0a8b0204b89269ac35
    83 Ne6c8e5f166f9472a9cc97a2eba64be29 schema:affiliation https://www.grid.ac/institutes/grid.249566.a
    84 schema:familyName Imaduddin
    85 schema:givenName A.
    86 rdf:type schema:Person
    87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Engineering
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Materials Engineering
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1030474 schema:issn 0022-2291
    94 1573-7357
    95 schema:name Journal of Low Temperature Physics
    96 rdf:type schema:Periodical
    97 sg:pub.10.1007/s10854-009-9974-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032718201
    98 https://doi.org/10.1007/s10854-009-9974-4
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10948-013-2358-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039512773
    101 https://doi.org/10.1007/s10948-013-2358-2
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10948-015-3120-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014595421
    104 https://doi.org/10.1007/s10948-015-3120-8
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s12043-002-0184-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045629775
    107 https://doi.org/10.1007/s12043-002-0184-3
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/35065039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052666736
    110 https://doi.org/10.1038/35065039
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/adfm.200700254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049126249
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.jallcom.2008.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007189538
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.matchemphys.2015.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012687037
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.physc.2009.05.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042849461
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.physc.2014.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013084155
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.scriptamat.2016.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027788251
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0921-4534(01)00913-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017215721
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/s0921-4534(02)01334-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040574412
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/s0921-4534(02)01842-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005703328
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1063/1.1479470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024567548
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1063/1.1517398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011659819
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1063/1.4790802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058069188
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1088/0953-2048/21/3/035006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013789672
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1088/0953-2048/23/2/025005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007147112
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1088/0953-8984/14/44/345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043617498
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevlett.86.2423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013327508
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.249566.a schema:alternateName Indonesian Institute of Sciences
    145 schema:name Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek Gd. 470, 15314, Tangerang Selatan, Banten, Indonesia
    146 rdf:type schema:Organization
    147 https://www.grid.ac/institutes/grid.411792.8 schema:alternateName Iwate University
    148 schema:name Graduate School of Arts and Science, Iwate University, 3-18-8 Ueda, 020-8551, Morioka, Japan
    149 rdf:type schema:Organization
    150 https://www.grid.ac/institutes/grid.444380.f schema:alternateName Sepuluh Nopember Institute of Technology
    151 schema:name Department of Physics Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS, Jl. Raya ITS, Keputih, Sukolilo, 60111, Surabaya, Indonesia
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...