Decay of Phase-Imprinted Dark Soliton in Bose–Einstein Condensate at Nonzero Temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-20

AUTHORS

Hiroki Ohya, Shohei Watabe, Tetsuro Nikuni

ABSTRACT

We study relaxation dynamics of dark soliton, created by a phase-imprinted method, in a two-dimensional trapped Bose–Einstein condensate at nonzero temperatures by using the projected Gross–Pitaevskii equation. At absolute zero temperature, a dark soliton is known to decay with a snake instability. At nonzero temperature, as expected, we find that this snake instability cannot be seen as clearly as in the absolute zero temperature case because of the presence of thermal fluctuations. We find that the energy dependence of the decay rate, defined by the half-life of the fidelity with respect to the phase-imprinted initial state, shows a power law decay and approaches a nonzero value in the large energy limit. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10909-019-02180-z

DOI

http://dx.doi.org/10.1007/s10909-019-02180-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112896236


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-9601, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohya", 
        "givenName": "Hiroki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-9601, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watabe", 
        "givenName": "Shohei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-9601, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikuni", 
        "givenName": "Tetsuro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00018730802564254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002899719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.053606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006514823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.053606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006514823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/150/3/032094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006942796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/150/3/032094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006942796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.051601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009994892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.051601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009994892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012494030", 
          "https://doi.org/10.1038/nphys962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.043612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018298737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.043612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018298737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031218791", 
          "https://doi.org/10.1038/nature04851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031218791", 
          "https://doi.org/10.1038/nature04851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031218791", 
          "https://doi.org/10.1038/nature04851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.053615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031821165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.053615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031821165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.160402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031946223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.160402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031946223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032165362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032165362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/40/11/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032390942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.255302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035387930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.255302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035387930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039295382", 
          "https://doi.org/10.1038/nature09722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.063608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041395098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.063608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041395098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043773752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043773752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.026704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050039521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.026704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050039521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.053618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050441228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.053618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050441228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.055101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.055101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.050105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.050105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1062527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5450.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062567905"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-20", 
    "datePublishedReg": "2019-03-20", 
    "description": "We study relaxation dynamics of dark soliton, created by a phase-imprinted method, in a two-dimensional trapped Bose\u2013Einstein condensate at nonzero temperatures by using the projected Gross\u2013Pitaevskii equation. At absolute zero temperature, a dark soliton is known to decay with a snake instability. At nonzero temperature, as expected, we find that this snake instability cannot be seen as clearly as in the absolute zero temperature case because of the presence of thermal fluctuations. We find that the energy dependence of the decay rate, defined by the half-life of the fidelity with respect to the phase-imprinted initial state, shows a power law decay and approaches a nonzero value in the large energy limit.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10909-019-02180-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5911734", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5923341", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Decay of Phase-Imprinted Dark Soliton in Bose\u2013Einstein Condensate at Nonzero Temperature", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "204d01844e2856821a3e43975497c8356b67ba6bb21086a761ecd94aa1185a75"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10909-019-02180-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112896236"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10909-019-02180-z", 
      "https://app.dimensions.ai/details/publication/pub.1112896236"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10909-019-02180-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02180-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02180-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02180-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02180-z'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10909-019-02180-z schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N152e3ee963ef49e18cda15e9106dd85c
4 schema:citation sg:pub.10.1038/nature04851
5 sg:pub.10.1038/nature09722
6 sg:pub.10.1038/nphys962
7 https://doi.org/10.1080/00018730802564254
8 https://doi.org/10.1088/0953-4075/40/11/007
9 https://doi.org/10.1088/1742-6596/150/3/032094
10 https://doi.org/10.1103/physreva.62.053606
11 https://doi.org/10.1103/physreva.65.043612
12 https://doi.org/10.1103/physreva.66.053618
13 https://doi.org/10.1103/physreva.68.053615
14 https://doi.org/10.1103/physreva.72.063608
15 https://doi.org/10.1103/physreva.75.051601
16 https://doi.org/10.1103/physreve.64.055101
17 https://doi.org/10.1103/physreve.78.026704
18 https://doi.org/10.1103/physreve.85.050105
19 https://doi.org/10.1103/physrevlett.108.110401
20 https://doi.org/10.1103/physrevlett.114.255302
21 https://doi.org/10.1103/physrevlett.76.2262
22 https://doi.org/10.1103/physrevlett.83.5198
23 https://doi.org/10.1103/physrevlett.87.160402
24 https://doi.org/10.1126/science.1062527
25 https://doi.org/10.1126/science.287.5450.97
26 schema:datePublished 2019-03-20
27 schema:datePublishedReg 2019-03-20
28 schema:description We study relaxation dynamics of dark soliton, created by a phase-imprinted method, in a two-dimensional trapped Bose–Einstein condensate at nonzero temperatures by using the projected Gross–Pitaevskii equation. At absolute zero temperature, a dark soliton is known to decay with a snake instability. At nonzero temperature, as expected, we find that this snake instability cannot be seen as clearly as in the absolute zero temperature case because of the presence of thermal fluctuations. We find that the energy dependence of the decay rate, defined by the half-life of the fidelity with respect to the phase-imprinted initial state, shows a power law decay and approaches a nonzero value in the large energy limit.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1030474
33 schema:name Decay of Phase-Imprinted Dark Soliton in Bose–Einstein Condensate at Nonzero Temperature
34 schema:pagination 1-7
35 schema:productId N7a8f5dc6428c4afe975853abdde11e2d
36 N9f6a5c18da67468fabe19848a26ca684
37 Nfc0bad51677d425ca0dd472423789c39
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112896236
39 https://doi.org/10.1007/s10909-019-02180-z
40 schema:sdDatePublished 2019-04-11T12:41
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nd6c61c9b335348cc80c1bc744f71e978
43 schema:url https://link.springer.com/10.1007%2Fs10909-019-02180-z
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0b850a1869ac4c30b1f9993520fd3943 rdf:first N7dc0d83a6bbf423b82eb76a061018eeb
48 rdf:rest N81818f2c899c401a8e69c29d657d41b9
49 N152e3ee963ef49e18cda15e9106dd85c rdf:first Nc6dbc19e2cb249cc980df0b09b4500c8
50 rdf:rest N0b850a1869ac4c30b1f9993520fd3943
51 N7a8f5dc6428c4afe975853abdde11e2d schema:name dimensions_id
52 schema:value pub.1112896236
53 rdf:type schema:PropertyValue
54 N7dc0d83a6bbf423b82eb76a061018eeb schema:affiliation https://www.grid.ac/institutes/grid.143643.7
55 schema:familyName Watabe
56 schema:givenName Shohei
57 rdf:type schema:Person
58 N81818f2c899c401a8e69c29d657d41b9 rdf:first Nb6974e2dabb5429794311751c6b12651
59 rdf:rest rdf:nil
60 N9f6a5c18da67468fabe19848a26ca684 schema:name doi
61 schema:value 10.1007/s10909-019-02180-z
62 rdf:type schema:PropertyValue
63 Nb6974e2dabb5429794311751c6b12651 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
64 schema:familyName Nikuni
65 schema:givenName Tetsuro
66 rdf:type schema:Person
67 Nc6dbc19e2cb249cc980df0b09b4500c8 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
68 schema:familyName Ohya
69 schema:givenName Hiroki
70 rdf:type schema:Person
71 Nd6c61c9b335348cc80c1bc744f71e978 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nfc0bad51677d425ca0dd472423789c39 schema:name readcube_id
74 schema:value 204d01844e2856821a3e43975497c8356b67ba6bb21086a761ecd94aa1185a75
75 rdf:type schema:PropertyValue
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
80 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
81 rdf:type schema:DefinedTerm
82 sg:grant.5911734 http://pending.schema.org/fundedItem sg:pub.10.1007/s10909-019-02180-z
83 rdf:type schema:MonetaryGrant
84 sg:grant.5923341 http://pending.schema.org/fundedItem sg:pub.10.1007/s10909-019-02180-z
85 rdf:type schema:MonetaryGrant
86 sg:journal.1030474 schema:issn 0022-2291
87 1573-7357
88 schema:name Journal of Low Temperature Physics
89 rdf:type schema:Periodical
90 sg:pub.10.1038/nature04851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031218791
91 https://doi.org/10.1038/nature04851
92 rdf:type schema:CreativeWork
93 sg:pub.10.1038/nature09722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039295382
94 https://doi.org/10.1038/nature09722
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/nphys962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012494030
97 https://doi.org/10.1038/nphys962
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1080/00018730802564254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002899719
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1088/0953-4075/40/11/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032390942
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1088/1742-6596/150/3/032094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006942796
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physreva.62.053606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006514823
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physreva.65.043612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018298737
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreva.66.053618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050441228
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physreva.68.053615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031821165
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physreva.72.063608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041395098
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physreva.75.051601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009994892
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physreve.64.055101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727532
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physreve.78.026704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050039521
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physreve.85.050105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060743392
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.108.110401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043773752
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevlett.114.255302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035387930
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.76.2262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812811
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.83.5198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032165362
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.87.160402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031946223
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1126/science.1062527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445220
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1126/science.287.5450.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567905
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
138 schema:name Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, 162-9601, Tokyo, Japan
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...