Sloshing Behavior Under Different Initial Liquid Temperatures in a Cryogenic Fuel Tank View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-07

AUTHORS

Zhan Liu, Yuyang Feng, Gang Lei, Yanzhong Li

ABSTRACT

A numerical model is developed to study fluid sloshing behavior in a liquid oxygen tank. Both external heat leak and the interfacial phase change are considered. The volume of fluid method is adopted to predict the interfacial fluctuation with the mesh motion treatment coupled. A sinusoidal wave is realized by the user-defined functions and is imposed on the tank to simulate the external excitation. The numerical model is in reasonable consistency with the experimental data, and the relative errors are less than 3.0%. On the basis of the numerical model, the effect of the initial liquid temperature on fluid sloshing is investigated. The pressurization performance, including pressure variations of the vapor and liquid monitors, and the vapor condensation are analyzed. Meanwhile, the sloshing force and moment are investigated. Finally, the interface dynamic fluctuation is analyzed by monitoring the elevation variations of different interfacial test points. The results infer that the initial liquid temperature has great effects on the fluid pressure distribution and the sloshing force suffered by the tank, while its influences on the sloshing moment and interface dynamic response are not obviously reflected. More... »

PAGES

1-17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10909-019-02167-w

DOI

http://dx.doi.org/10.1007/s10909-019-02167-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112609355


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China University of Mining and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411510.0", 
          "name": [
            "State Key Laboratory of Technologies in Space Cryogenic Propellants, 100028, Beijing, China", 
            "State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, 221116, Xuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, 221116, Xuzhou, China", 
            "School of Energy and Power Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Yuyang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Institute of Physics and Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.458502.e", 
          "name": [
            "State Key Laboratory of Technologies in Space Cryogenic Propellants, 100028, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Gang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory of Technologies in Space Cryogenic Propellants, 100028, Beijing, China", 
            "School of Energy and Power Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yanzhong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2006.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003934161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/hff-08-2015-0315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004190404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.05.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008485810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2014.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017179714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.10.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021252097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029543579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-6058(14)60065-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575335", 
          "https://doi.org/10.1016/s1001-6058(14)60065-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033468060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033468060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033468060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033468060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2016.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038033315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2011.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038331989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apor.2016.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040218119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2015.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043625856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045432793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17445302.2017.1301341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084168433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2017.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085048437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apor.2017.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092167216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511536656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098682374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anucene.2017.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099655490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anucene.2017.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099655490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2017.12.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099726917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.iecr.7b03631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100776238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trpro.2018.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101179767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2018.02.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101240055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2018.02.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101240055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2018.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103594859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2018.10.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109894459"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-07", 
    "datePublishedReg": "2019-03-07", 
    "description": "A numerical model is developed to study fluid sloshing behavior in a liquid oxygen tank. Both external heat leak and the interfacial phase change are considered. The volume of fluid method is adopted to predict the interfacial fluctuation with the mesh motion treatment coupled. A sinusoidal wave is realized by the user-defined functions and is imposed on the tank to simulate the external excitation. The numerical model is in reasonable consistency with the experimental data, and the relative errors are less than 3.0%. On the basis of the numerical model, the effect of the initial liquid temperature on fluid sloshing is investigated. The pressurization performance, including pressure variations of the vapor and liquid monitors, and the vapor condensation are analyzed. Meanwhile, the sloshing force and moment are investigated. Finally, the interface dynamic fluctuation is analyzed by monitoring the elevation variations of different interfacial test points. The results infer that the initial liquid temperature has great effects on the fluid pressure distribution and the sloshing force suffered by the tank, while its influences on the sloshing moment and interface dynamic response are not obviously reflected.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10909-019-02167-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Sloshing Behavior Under Different Initial Liquid Temperatures in a Cryogenic Fuel Tank", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef7d81638f538c8308717dd86785f9d6fe99ec3dc983926839fb4d4dba884984"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10909-019-02167-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112609355"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10909-019-02167-w", 
      "https://app.dimensions.ai/details/publication/pub.1112609355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11695_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10909-019-02167-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02167-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02167-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02167-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-019-02167-w'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      48 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10909-019-02167-w schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd06d00f1e4c0488884d9edd46c850d7b
4 schema:citation sg:pub.10.1016/s1001-6058(14)60065-2
5 https://doi.org/10.1016/j.anucene.2017.12.026
6 https://doi.org/10.1016/j.apor.2016.07.012
7 https://doi.org/10.1016/j.apor.2017.09.008
8 https://doi.org/10.1016/j.applthermaleng.2015.05.020
9 https://doi.org/10.1016/j.applthermaleng.2016.05.195
10 https://doi.org/10.1016/j.applthermaleng.2016.10.124
11 https://doi.org/10.1016/j.applthermaleng.2018.02.086
12 https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.025
13 https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.072
14 https://doi.org/10.1016/j.ijhydene.2018.04.001
15 https://doi.org/10.1016/j.ijhydene.2018.10.113
16 https://doi.org/10.1016/j.ijmultiphaseflow.2011.08.005
17 https://doi.org/10.1016/j.jcp.2006.12.020
18 https://doi.org/10.1016/j.jhazmat.2017.12.047
19 https://doi.org/10.1016/j.oceaneng.2014.12.022
20 https://doi.org/10.1016/j.oceaneng.2015.06.044
21 https://doi.org/10.1016/j.oceaneng.2016.09.004
22 https://doi.org/10.1016/j.oceaneng.2017.04.021
23 https://doi.org/10.1016/j.trpro.2018.02.019
24 https://doi.org/10.1017/cbo9780511536656
25 https://doi.org/10.1021/acs.iecr.7b03631
26 https://doi.org/10.1080/17445302.2017.1301341
27 https://doi.org/10.1108/hff-08-2015-0315
28 schema:datePublished 2019-03-07
29 schema:datePublishedReg 2019-03-07
30 schema:description A numerical model is developed to study fluid sloshing behavior in a liquid oxygen tank. Both external heat leak and the interfacial phase change are considered. The volume of fluid method is adopted to predict the interfacial fluctuation with the mesh motion treatment coupled. A sinusoidal wave is realized by the user-defined functions and is imposed on the tank to simulate the external excitation. The numerical model is in reasonable consistency with the experimental data, and the relative errors are less than 3.0%. On the basis of the numerical model, the effect of the initial liquid temperature on fluid sloshing is investigated. The pressurization performance, including pressure variations of the vapor and liquid monitors, and the vapor condensation are analyzed. Meanwhile, the sloshing force and moment are investigated. Finally, the interface dynamic fluctuation is analyzed by monitoring the elevation variations of different interfacial test points. The results infer that the initial liquid temperature has great effects on the fluid pressure distribution and the sloshing force suffered by the tank, while its influences on the sloshing moment and interface dynamic response are not obviously reflected.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf sg:journal.1030474
35 schema:name Sloshing Behavior Under Different Initial Liquid Temperatures in a Cryogenic Fuel Tank
36 schema:pagination 1-17
37 schema:productId N54b9f69470404052945f2cd2591a096a
38 N6eb24665cdf741c3a6a83684562fc89a
39 Na2d0951915f641d7a52859c4d48d6f73
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112609355
41 https://doi.org/10.1007/s10909-019-02167-w
42 schema:sdDatePublished 2019-04-11T11:17
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N8084476a19e442b88d3a1d6650c964b1
45 schema:url https://link.springer.com/10.1007%2Fs10909-019-02167-w
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N15253540703f4d21aca32726bf1f90a9 rdf:first N36286aeb972f42c883d4c799a4c7c548
50 rdf:rest rdf:nil
51 N20b93b22f381425181336094f68ee9db schema:affiliation https://www.grid.ac/institutes/grid.458502.e
52 schema:familyName Lei
53 schema:givenName Gang
54 rdf:type schema:Person
55 N36286aeb972f42c883d4c799a4c7c548 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
56 schema:familyName Li
57 schema:givenName Yanzhong
58 rdf:type schema:Person
59 N54b9f69470404052945f2cd2591a096a schema:name doi
60 schema:value 10.1007/s10909-019-02167-w
61 rdf:type schema:PropertyValue
62 N5fdea6daea2c4bf3acdae2e8be7e669f rdf:first Nefc6c837baea4b9dbf08a4fe2708d4f7
63 rdf:rest Ne6dcb3d2259d4159839da7e8065cd6e0
64 N6eb24665cdf741c3a6a83684562fc89a schema:name dimensions_id
65 schema:value pub.1112609355
66 rdf:type schema:PropertyValue
67 N738381fb42374bc78b40d2f53c46234d schema:affiliation https://www.grid.ac/institutes/grid.411510.0
68 schema:familyName Liu
69 schema:givenName Zhan
70 rdf:type schema:Person
71 N8084476a19e442b88d3a1d6650c964b1 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Na2d0951915f641d7a52859c4d48d6f73 schema:name readcube_id
74 schema:value ef7d81638f538c8308717dd86785f9d6fe99ec3dc983926839fb4d4dba884984
75 rdf:type schema:PropertyValue
76 Nd06d00f1e4c0488884d9edd46c850d7b rdf:first N738381fb42374bc78b40d2f53c46234d
77 rdf:rest N5fdea6daea2c4bf3acdae2e8be7e669f
78 Ne6dcb3d2259d4159839da7e8065cd6e0 rdf:first N20b93b22f381425181336094f68ee9db
79 rdf:rest N15253540703f4d21aca32726bf1f90a9
80 Nefc6c837baea4b9dbf08a4fe2708d4f7 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
81 schema:familyName Feng
82 schema:givenName Yuyang
83 rdf:type schema:Person
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
88 schema:name Interdisciplinary Engineering
89 rdf:type schema:DefinedTerm
90 sg:journal.1030474 schema:issn 0022-2291
91 1573-7357
92 schema:name Journal of Low Temperature Physics
93 rdf:type schema:Periodical
94 sg:pub.10.1016/s1001-6058(14)60065-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031575335
95 https://doi.org/10.1016/s1001-6058(14)60065-2
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.anucene.2017.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099655490
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.apor.2016.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040218119
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.apor.2017.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092167216
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.applthermaleng.2015.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033468060
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.applthermaleng.2016.05.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008485810
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.applthermaleng.2016.10.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021252097
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.applthermaleng.2018.02.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101240055
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045432793
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029543579
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ijhydene.2018.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103594859
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ijhydene.2018.10.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109894459
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijmultiphaseflow.2011.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038331989
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jcp.2006.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003934161
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jhazmat.2017.12.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099726917
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.oceaneng.2014.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017179714
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.oceaneng.2015.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043625856
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.oceaneng.2016.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038033315
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.oceaneng.2017.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085048437
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.trpro.2018.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101179767
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1017/cbo9780511536656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098682374
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/acs.iecr.7b03631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100776238
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/17445302.2017.1301341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084168433
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1108/hff-08-2015-0315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004190404
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.411510.0 schema:alternateName China University of Mining and Technology
144 schema:name State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, 221116, Xuzhou, China
145 State Key Laboratory of Technologies in Space Cryogenic Propellants, 100028, Beijing, China
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
148 schema:name School of Energy and Power Engineering, Xi’an Jiaotong University, 710049, Xi’an, China
149 State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, 221116, Xuzhou, China
150 State Key Laboratory of Technologies in Space Cryogenic Propellants, 100028, Beijing, China
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.458502.e schema:alternateName Technical Institute of Physics and Chemistry
153 schema:name State Key Laboratory of Technologies in Space Cryogenic Propellants, 100028, Beijing, China
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...