Inter- and Intra-Granular Flux Pinning Properties in Ba(Fe0.91Co0.09)2As2 Superconductor in AC and DC Magnetic Fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12-02

AUTHORS

M. Nikolo, X. Shi, E. S. Choi, J. Jiang, J. D. Weiss, E. E. Hellstrom

ABSTRACT

Flux pinning dynamics are studied in a Ba(Fe0.91\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.91}$$\end{document}Co0.09)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.09})_{2}$$\end{document}As2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} (Tc=25.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{{c}}=25.3$$\end{document} K) bulk samples via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency of small ac fields is increased from 75 to 1997 Hz in all magnetic fields ranging from 0 to 18 T. The temperature profile of the ac susceptibility curves shows narrower ac loss distribution in temperature for higher frequencies and gradually narrowing frequency shift as the temperature sweeps the full range from 2 K to the upper critical field temperature. The frequency (f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f)$$\end{document} shift of the susceptibility curves is modeled by the Anderson–Kim Arrhenius law f=f0exp(-Ea/kT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = f_{0} \mathrm {exp}(- {E}_\mathrm{{a}} /kT)$$\end{document} to determine flux activation energy Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{{a}}/k$$\end{document} as a function of magnetic field. Extensive mapping of the irreversibility lines shows broad dependence on the magnitude and the frequency of the ac field, in addition to the dc magnetic field. The irreversibility lines were just below the upper critical field Hc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{{c2}}$$\end{document} lines at 0 T in the H-T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H-T$$\end{document} plane, but they moved significantly below the Hc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{{c2}}$$\end{document} line at higher magnetic fields, placing constraints on the use of these materials at higher magnetic fields such as 10 T and above. More... »

PAGES

345-354

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x

DOI

http://dx.doi.org/10.1007/s10909-014-1254-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020112207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Department, Saint Louis University, 63103, St. Louis, MO, USA", 
          "id": "http://www.grid.ac/institutes/grid.262962.b", 
          "name": [
            "Physics Department, Saint Louis University, 63103, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolo", 
        "givenName": "M.", 
        "id": "sg:person.011472757650.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "X.", 
        "id": "sg:person.012261435743.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "E. S.", 
        "id": "sg:person.0635107016.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "J.", 
        "id": "sg:person.01154110202.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "J. D.", 
        "id": "sg:person.01056616531.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellstrom", 
        "givenName": "E. E.", 
        "id": "sg:person.0632002631.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-4-431-68305-6_121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036054329", 
          "https://doi.org/10.1007/978-4-431-68305-6_121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9059-7_78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012446158", 
          "https://doi.org/10.1007/978-1-4757-9059-7_78"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12-02", 
    "datePublishedReg": "2014-12-02", 
    "description": "Flux pinning dynamics are studied in a Ba(Fe0.91\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0.91}$$\\end{document}Co0.09)2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0.09})_{2}$$\\end{document}As2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2}$$\\end{document} (Tc=25.3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T_\\mathrm{{c}}=25.3$$\\end{document} K) bulk samples via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency of small ac fields is increased from 75 to 1997 Hz in all magnetic fields ranging from 0 to 18 T. The temperature profile of the ac susceptibility curves shows narrower ac loss distribution in temperature for higher frequencies and gradually narrowing frequency shift as the temperature sweeps the full range from 2 K to the upper critical field temperature. The frequency (f)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f)$$\\end{document} shift of the susceptibility curves is modeled by the Anderson\u2013Kim Arrhenius law f=f0exp(-Ea/kT)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f = f_{0} \\mathrm {exp}(- {E}_\\mathrm{{a}} /kT)$$\\end{document} to determine flux activation energy Ea/k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E_\\mathrm{{a}}/k$$\\end{document} as a function of magnetic field. Extensive mapping of the irreversibility lines shows broad dependence on the magnitude and the frequency of the ac field, in addition to the dc magnetic field. The irreversibility lines were just below the upper critical field Hc2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_\\mathrm{{c2}}$$\\end{document} lines at 0 T in the H-T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H-T$$\\end{document} plane, but they moved significantly below the Hc2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_\\mathrm{{c2}}$$\\end{document} line at higher magnetic fields, placing constraints on the use of these materials at higher magnetic fields such as 10 T and above.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10909-014-1254-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3484564", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3479346", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3113501", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "178"
      }
    ], 
    "keywords": [
      "magnetic field", 
      "high magnetic fields", 
      "dc magnetic field", 
      "irreversibility line", 
      "susceptibility curves", 
      "upper critical field", 
      "flux pinning properties", 
      "ac susceptibility curves", 
      "small ac field", 
      "AC susceptibility measurements", 
      "ac field", 
      "pinning properties", 
      "critical field", 
      "susceptibility measurements", 
      "loss distribution", 
      "broad dependence", 
      "temperature profiles", 
      "field", 
      "superconductors", 
      "bulk samples", 
      "Ea/", 
      "frequency shift", 
      "dynamics", 
      "constraints", 
      "curves", 
      "field temperatures", 
      "dependence", 
      "plane", 
      "temperature", 
      "frequency", 
      "full range", 
      "distribution", 
      "properties", 
      "function", 
      "lines", 
      "high temperature", 
      "Exp", 
      "extensive mapping", 
      "high frequency", 
      "magnitude", 
      "mapping", 
      "measurements", 
      "range", 
      "shift", 
      "AC", 
      "profile", 
      "materials", 
      "Hz", 
      "use", 
      "addition", 
      "samples", 
      "inter"
    ], 
    "name": "Inter- and Intra-Granular Flux Pinning Properties in Ba(Fe0.91Co0.09)2As2 Superconductor in AC and DC Magnetic Fields", 
    "pagination": "345-354", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020112207"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10909-014-1254-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10909-014-1254-x", 
      "https://app.dimensions.ai/details/publication/pub.1020112207"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_641.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10909-014-1254-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      79 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10909-014-1254-x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N626f724bfb0b46a698b0adcf40f49dff
4 schema:citation sg:pub.10.1007/978-1-4757-9059-7_78
5 sg:pub.10.1007/978-4-431-68305-6_121
6 schema:datePublished 2014-12-02
7 schema:datePublishedReg 2014-12-02
8 schema:description Flux pinning dynamics are studied in a Ba(Fe0.91\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.91}$$\end{document}Co0.09)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.09})_{2}$$\end{document}As2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} (Tc=25.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{{c}}=25.3$$\end{document} K) bulk samples via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency of small ac fields is increased from 75 to 1997 Hz in all magnetic fields ranging from 0 to 18 T. The temperature profile of the ac susceptibility curves shows narrower ac loss distribution in temperature for higher frequencies and gradually narrowing frequency shift as the temperature sweeps the full range from 2 K to the upper critical field temperature. The frequency (f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f)$$\end{document} shift of the susceptibility curves is modeled by the Anderson–Kim Arrhenius law f=f0exp(-Ea/kT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = f_{0} \mathrm {exp}(- {E}_\mathrm{{a}} /kT)$$\end{document} to determine flux activation energy Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{{a}}/k$$\end{document} as a function of magnetic field. Extensive mapping of the irreversibility lines shows broad dependence on the magnitude and the frequency of the ac field, in addition to the dc magnetic field. The irreversibility lines were just below the upper critical field Hc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{{c2}}$$\end{document} lines at 0 T in the H-T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H-T$$\end{document} plane, but they moved significantly below the Hc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{{c2}}$$\end{document} line at higher magnetic fields, placing constraints on the use of these materials at higher magnetic fields such as 10 T and above.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N0b7e6aeefac94f5fae5a1cab9d3c07cf
13 N5cedd2793be7489aa43af46d222edffa
14 sg:journal.1030474
15 schema:keywords AC
16 AC susceptibility measurements
17 Ea/
18 Exp
19 Hz
20 ac field
21 ac susceptibility curves
22 addition
23 broad dependence
24 bulk samples
25 constraints
26 critical field
27 curves
28 dc magnetic field
29 dependence
30 distribution
31 dynamics
32 extensive mapping
33 field
34 field temperatures
35 flux pinning properties
36 frequency
37 frequency shift
38 full range
39 function
40 high frequency
41 high magnetic fields
42 high temperature
43 inter
44 irreversibility line
45 lines
46 loss distribution
47 magnetic field
48 magnitude
49 mapping
50 materials
51 measurements
52 pinning properties
53 plane
54 profile
55 properties
56 range
57 samples
58 shift
59 small ac field
60 superconductors
61 susceptibility curves
62 susceptibility measurements
63 temperature
64 temperature profiles
65 upper critical field
66 use
67 schema:name Inter- and Intra-Granular Flux Pinning Properties in Ba(Fe0.91Co0.09)2As2 Superconductor in AC and DC Magnetic Fields
68 schema:pagination 345-354
69 schema:productId N395678c382274634af09a87146c76512
70 Na3b93f58bafd45dc943057352345b9ef
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020112207
72 https://doi.org/10.1007/s10909-014-1254-x
73 schema:sdDatePublished 2022-05-20T07:30
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N6355a2fd570b47c888a4d38dd5d8744d
76 schema:url https://doi.org/10.1007/s10909-014-1254-x
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0b7e6aeefac94f5fae5a1cab9d3c07cf schema:issueNumber 5-6
81 rdf:type schema:PublicationIssue
82 N18d6564af2394a9e8c663c20a13488be rdf:first sg:person.012261435743.14
83 rdf:rest N2eec9329e29a4052b8faad5078d5c937
84 N2eec9329e29a4052b8faad5078d5c937 rdf:first sg:person.0635107016.86
85 rdf:rest N8714eae439bf456f9b52d7e99a638580
86 N395678c382274634af09a87146c76512 schema:name dimensions_id
87 schema:value pub.1020112207
88 rdf:type schema:PropertyValue
89 N3d5a1066fefd4ba682c017361e4b4da5 rdf:first sg:person.0632002631.91
90 rdf:rest rdf:nil
91 N5cedd2793be7489aa43af46d222edffa schema:volumeNumber 178
92 rdf:type schema:PublicationVolume
93 N626f724bfb0b46a698b0adcf40f49dff rdf:first sg:person.011472757650.45
94 rdf:rest N18d6564af2394a9e8c663c20a13488be
95 N6355a2fd570b47c888a4d38dd5d8744d schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N8714eae439bf456f9b52d7e99a638580 rdf:first sg:person.01154110202.55
98 rdf:rest N8b6cadd3579a4fb48e0a7973c830b98c
99 N8b6cadd3579a4fb48e0a7973c830b98c rdf:first sg:person.01056616531.73
100 rdf:rest N3d5a1066fefd4ba682c017361e4b4da5
101 Na3b93f58bafd45dc943057352345b9ef schema:name doi
102 schema:value 10.1007/s10909-014-1254-x
103 rdf:type schema:PropertyValue
104 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
105 schema:name Physical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
108 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
109 rdf:type schema:DefinedTerm
110 sg:grant.3113501 http://pending.schema.org/fundedItem sg:pub.10.1007/s10909-014-1254-x
111 rdf:type schema:MonetaryGrant
112 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1007/s10909-014-1254-x
113 rdf:type schema:MonetaryGrant
114 sg:grant.3484564 http://pending.schema.org/fundedItem sg:pub.10.1007/s10909-014-1254-x
115 rdf:type schema:MonetaryGrant
116 sg:journal.1030474 schema:issn 0022-2291
117 1573-7357
118 schema:name Journal of Low Temperature Physics
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.01056616531.73 schema:affiliation grid-institutes:grid.481548.4
122 schema:familyName Weiss
123 schema:givenName J. D.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73
125 rdf:type schema:Person
126 sg:person.011472757650.45 schema:affiliation grid-institutes:grid.262962.b
127 schema:familyName Nikolo
128 schema:givenName M.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45
130 rdf:type schema:Person
131 sg:person.01154110202.55 schema:affiliation grid-institutes:grid.481548.4
132 schema:familyName Jiang
133 schema:givenName J.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55
135 rdf:type schema:Person
136 sg:person.012261435743.14 schema:affiliation grid-institutes:grid.481548.4
137 schema:familyName Shi
138 schema:givenName X.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14
140 rdf:type schema:Person
141 sg:person.0632002631.91 schema:affiliation grid-institutes:grid.481548.4
142 schema:familyName Hellstrom
143 schema:givenName E. E.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91
145 rdf:type schema:Person
146 sg:person.0635107016.86 schema:affiliation grid-institutes:grid.481548.4
147 schema:familyName Choi
148 schema:givenName E. S.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86
150 rdf:type schema:Person
151 sg:pub.10.1007/978-1-4757-9059-7_78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012446158
152 https://doi.org/10.1007/978-1-4757-9059-7_78
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-4-431-68305-6_121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036054329
155 https://doi.org/10.1007/978-4-431-68305-6_121
156 rdf:type schema:CreativeWork
157 grid-institutes:grid.262962.b schema:alternateName Physics Department, Saint Louis University, 63103, St. Louis, MO, USA
158 schema:name Physics Department, Saint Louis University, 63103, St. Louis, MO, USA
159 rdf:type schema:Organization
160 grid-institutes:grid.481548.4 schema:alternateName National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA
161 National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
162 schema:name National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA
163 National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...