Ontology type: schema:ScholarlyArticle
2014-12-02
AUTHORSM. Nikolo, X. Shi, E. S. Choi, J. Jiang, J. D. Weiss, E. E. Hellstrom
ABSTRACTFlux pinning dynamics are studied in a Ba(Fe0.91\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.91}$$\end{document}Co0.09)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.09})_{2}$$\end{document}As2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} (Tc=25.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{{c}}=25.3$$\end{document} K) bulk samples via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency of small ac fields is increased from 75 to 1997 Hz in all magnetic fields ranging from 0 to 18 T. The temperature profile of the ac susceptibility curves shows narrower ac loss distribution in temperature for higher frequencies and gradually narrowing frequency shift as the temperature sweeps the full range from 2 K to the upper critical field temperature. The frequency (f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f)$$\end{document} shift of the susceptibility curves is modeled by the Anderson–Kim Arrhenius law f=f0exp(-Ea/kT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = f_{0} \mathrm {exp}(- {E}_\mathrm{{a}} /kT)$$\end{document} to determine flux activation energy Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{{a}}/k$$\end{document} as a function of magnetic field. Extensive mapping of the irreversibility lines shows broad dependence on the magnitude and the frequency of the ac field, in addition to the dc magnetic field. The irreversibility lines were just below the upper critical field Hc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{{c2}}$$\end{document} lines at 0 T in the H-T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H-T$$\end{document} plane, but they moved significantly below the Hc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{{c2}}$$\end{document} line at higher magnetic fields, placing constraints on the use of these materials at higher magnetic fields such as 10 T and above. More... »
PAGES345-354
http://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x
DOIhttp://dx.doi.org/10.1007/s10909-014-1254-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020112207
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Physics Department, Saint Louis University, 63103, St. Louis, MO, USA",
"id": "http://www.grid.ac/institutes/grid.262962.b",
"name": [
"Physics Department, Saint Louis University, 63103, St. Louis, MO, USA"
],
"type": "Organization"
},
"familyName": "Nikolo",
"givenName": "M.",
"id": "sg:person.011472757650.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Shi",
"givenName": "X.",
"id": "sg:person.012261435743.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Choi",
"givenName": "E. S.",
"id": "sg:person.0635107016.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Jiang",
"givenName": "J.",
"id": "sg:person.01154110202.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Weiss",
"givenName": "J. D.",
"id": "sg:person.01056616531.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Hellstrom",
"givenName": "E. E.",
"id": "sg:person.0632002631.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-4-431-68305-6_121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036054329",
"https://doi.org/10.1007/978-4-431-68305-6_121"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-9059-7_78",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012446158",
"https://doi.org/10.1007/978-1-4757-9059-7_78"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-12-02",
"datePublishedReg": "2014-12-02",
"description": "Flux pinning dynamics are studied in a Ba(Fe0.91\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0.91}$$\\end{document}Co0.09)2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0.09})_{2}$$\\end{document}As2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2}$$\\end{document} (Tc=25.3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T_\\mathrm{{c}}=25.3$$\\end{document} K) bulk samples via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency of small ac fields is increased from 75 to 1997 Hz in all magnetic fields ranging from 0 to 18 T. The temperature profile of the ac susceptibility curves shows narrower ac loss distribution in temperature for higher frequencies and gradually narrowing frequency shift as the temperature sweeps the full range from 2 K to the upper critical field temperature. The frequency (f)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f)$$\\end{document} shift of the susceptibility curves is modeled by the Anderson\u2013Kim Arrhenius law f=f0exp(-Ea/kT)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f = f_{0} \\mathrm {exp}(- {E}_\\mathrm{{a}} /kT)$$\\end{document} to determine flux activation energy Ea/k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E_\\mathrm{{a}}/k$$\\end{document} as a function of magnetic field. Extensive mapping of the irreversibility lines shows broad dependence on the magnitude and the frequency of the ac field, in addition to the dc magnetic field. The irreversibility lines were just below the upper critical field Hc2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_\\mathrm{{c2}}$$\\end{document} lines at 0 T in the H-T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H-T$$\\end{document} plane, but they moved significantly below the Hc2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_\\mathrm{{c2}}$$\\end{document} line at higher magnetic fields, placing constraints on the use of these materials at higher magnetic fields such as 10 T and above.",
"genre": "article",
"id": "sg:pub.10.1007/s10909-014-1254-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.3484564",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3479346",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3113501",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1030474",
"issn": [
"0022-2291",
"1573-7357"
],
"name": "Journal of Low Temperature Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5-6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "178"
}
],
"keywords": [
"magnetic field",
"high magnetic fields",
"dc magnetic field",
"irreversibility line",
"susceptibility curves",
"upper critical field",
"flux pinning properties",
"ac susceptibility curves",
"small ac field",
"AC susceptibility measurements",
"ac field",
"pinning properties",
"critical field",
"susceptibility measurements",
"loss distribution",
"broad dependence",
"temperature profiles",
"field",
"superconductors",
"bulk samples",
"Ea/",
"frequency shift",
"dynamics",
"constraints",
"curves",
"field temperatures",
"dependence",
"plane",
"temperature",
"frequency",
"full range",
"distribution",
"properties",
"function",
"lines",
"high temperature",
"Exp",
"extensive mapping",
"high frequency",
"magnitude",
"mapping",
"measurements",
"range",
"shift",
"AC",
"profile",
"materials",
"Hz",
"use",
"addition",
"samples",
"inter"
],
"name": "Inter- and Intra-Granular Flux Pinning Properties in Ba(Fe0.91Co0.09)2As2 Superconductor in AC and DC Magnetic Fields",
"pagination": "345-354",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020112207"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10909-014-1254-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10909-014-1254-x",
"https://app.dimensions.ai/details/publication/pub.1020112207"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_641.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10909-014-1254-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1254-x'
This table displays all metadata directly associated to this object as RDF triples.
164 TRIPLES
22 PREDICATES
79 URIs
69 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10909-014-1254-x | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N626f724bfb0b46a698b0adcf40f49dff |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4757-9059-7_78 |
5 | ″ | ″ | sg:pub.10.1007/978-4-431-68305-6_121 |
6 | ″ | schema:datePublished | 2014-12-02 |
7 | ″ | schema:datePublishedReg | 2014-12-02 |
8 | ″ | schema:description | Flux pinning dynamics are studied in a Ba(Fe0.91\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.91}$$\end{document}Co0.09)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.09})_{2}$$\end{document}As2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} (Tc=25.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{{c}}=25.3$$\end{document} K) bulk samples via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency of small ac fields is increased from 75 to 1997 Hz in all magnetic fields ranging from 0 to 18 T. The temperature profile of the ac susceptibility curves shows narrower ac loss distribution in temperature for higher frequencies and gradually narrowing frequency shift as the temperature sweeps the full range from 2 K to the upper critical field temperature. The frequency (f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f)$$\end{document} shift of the susceptibility curves is modeled by the Anderson–Kim Arrhenius law f=f0exp(-Ea/kT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = f_{0} \mathrm {exp}(- {E}_\mathrm{{a}} /kT)$$\end{document} to determine flux activation energy Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{{a}}/k$$\end{document} as a function of magnetic field. Extensive mapping of the irreversibility lines shows broad dependence on the magnitude and the frequency of the ac field, in addition to the dc magnetic field. The irreversibility lines were just below the upper critical field Hc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{{c2}}$$\end{document} lines at 0 T in the H-T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H-T$$\end{document} plane, but they moved significantly below the Hc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{{c2}}$$\end{document} line at higher magnetic fields, placing constraints on the use of these materials at higher magnetic fields such as 10 T and above. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N0b7e6aeefac94f5fae5a1cab9d3c07cf |
13 | ″ | ″ | N5cedd2793be7489aa43af46d222edffa |
14 | ″ | ″ | sg:journal.1030474 |
15 | ″ | schema:keywords | AC |
16 | ″ | ″ | AC susceptibility measurements |
17 | ″ | ″ | Ea/ |
18 | ″ | ″ | Exp |
19 | ″ | ″ | Hz |
20 | ″ | ″ | ac field |
21 | ″ | ″ | ac susceptibility curves |
22 | ″ | ″ | addition |
23 | ″ | ″ | broad dependence |
24 | ″ | ″ | bulk samples |
25 | ″ | ″ | constraints |
26 | ″ | ″ | critical field |
27 | ″ | ″ | curves |
28 | ″ | ″ | dc magnetic field |
29 | ″ | ″ | dependence |
30 | ″ | ″ | distribution |
31 | ″ | ″ | dynamics |
32 | ″ | ″ | extensive mapping |
33 | ″ | ″ | field |
34 | ″ | ″ | field temperatures |
35 | ″ | ″ | flux pinning properties |
36 | ″ | ″ | frequency |
37 | ″ | ″ | frequency shift |
38 | ″ | ″ | full range |
39 | ″ | ″ | function |
40 | ″ | ″ | high frequency |
41 | ″ | ″ | high magnetic fields |
42 | ″ | ″ | high temperature |
43 | ″ | ″ | inter |
44 | ″ | ″ | irreversibility line |
45 | ″ | ″ | lines |
46 | ″ | ″ | loss distribution |
47 | ″ | ″ | magnetic field |
48 | ″ | ″ | magnitude |
49 | ″ | ″ | mapping |
50 | ″ | ″ | materials |
51 | ″ | ″ | measurements |
52 | ″ | ″ | pinning properties |
53 | ″ | ″ | plane |
54 | ″ | ″ | profile |
55 | ″ | ″ | properties |
56 | ″ | ″ | range |
57 | ″ | ″ | samples |
58 | ″ | ″ | shift |
59 | ″ | ″ | small ac field |
60 | ″ | ″ | superconductors |
61 | ″ | ″ | susceptibility curves |
62 | ″ | ″ | susceptibility measurements |
63 | ″ | ″ | temperature |
64 | ″ | ″ | temperature profiles |
65 | ″ | ″ | upper critical field |
66 | ″ | ″ | use |
67 | ″ | schema:name | Inter- and Intra-Granular Flux Pinning Properties in Ba(Fe0.91Co0.09)2As2 Superconductor in AC and DC Magnetic Fields |
68 | ″ | schema:pagination | 345-354 |
69 | ″ | schema:productId | N395678c382274634af09a87146c76512 |
70 | ″ | ″ | Na3b93f58bafd45dc943057352345b9ef |
71 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020112207 |
72 | ″ | ″ | https://doi.org/10.1007/s10909-014-1254-x |
73 | ″ | schema:sdDatePublished | 2022-05-20T07:30 |
74 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
75 | ″ | schema:sdPublisher | N6355a2fd570b47c888a4d38dd5d8744d |
76 | ″ | schema:url | https://doi.org/10.1007/s10909-014-1254-x |
77 | ″ | sgo:license | sg:explorer/license/ |
78 | ″ | sgo:sdDataset | articles |
79 | ″ | rdf:type | schema:ScholarlyArticle |
80 | N0b7e6aeefac94f5fae5a1cab9d3c07cf | schema:issueNumber | 5-6 |
81 | ″ | rdf:type | schema:PublicationIssue |
82 | N18d6564af2394a9e8c663c20a13488be | rdf:first | sg:person.012261435743.14 |
83 | ″ | rdf:rest | N2eec9329e29a4052b8faad5078d5c937 |
84 | N2eec9329e29a4052b8faad5078d5c937 | rdf:first | sg:person.0635107016.86 |
85 | ″ | rdf:rest | N8714eae439bf456f9b52d7e99a638580 |
86 | N395678c382274634af09a87146c76512 | schema:name | dimensions_id |
87 | ″ | schema:value | pub.1020112207 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N3d5a1066fefd4ba682c017361e4b4da5 | rdf:first | sg:person.0632002631.91 |
90 | ″ | rdf:rest | rdf:nil |
91 | N5cedd2793be7489aa43af46d222edffa | schema:volumeNumber | 178 |
92 | ″ | rdf:type | schema:PublicationVolume |
93 | N626f724bfb0b46a698b0adcf40f49dff | rdf:first | sg:person.011472757650.45 |
94 | ″ | rdf:rest | N18d6564af2394a9e8c663c20a13488be |
95 | N6355a2fd570b47c888a4d38dd5d8744d | schema:name | Springer Nature - SN SciGraph project |
96 | ″ | rdf:type | schema:Organization |
97 | N8714eae439bf456f9b52d7e99a638580 | rdf:first | sg:person.01154110202.55 |
98 | ″ | rdf:rest | N8b6cadd3579a4fb48e0a7973c830b98c |
99 | N8b6cadd3579a4fb48e0a7973c830b98c | rdf:first | sg:person.01056616531.73 |
100 | ″ | rdf:rest | N3d5a1066fefd4ba682c017361e4b4da5 |
101 | Na3b93f58bafd45dc943057352345b9ef | schema:name | doi |
102 | ″ | schema:value | 10.1007/s10909-014-1254-x |
103 | ″ | rdf:type | schema:PropertyValue |
104 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Physical Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | sg:grant.3113501 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s10909-014-1254-x |
111 | ″ | rdf:type | schema:MonetaryGrant |
112 | sg:grant.3479346 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s10909-014-1254-x |
113 | ″ | rdf:type | schema:MonetaryGrant |
114 | sg:grant.3484564 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s10909-014-1254-x |
115 | ″ | rdf:type | schema:MonetaryGrant |
116 | sg:journal.1030474 | schema:issn | 0022-2291 |
117 | ″ | ″ | 1573-7357 |
118 | ″ | schema:name | Journal of Low Temperature Physics |
119 | ″ | schema:publisher | Springer Nature |
120 | ″ | rdf:type | schema:Periodical |
121 | sg:person.01056616531.73 | schema:affiliation | grid-institutes:grid.481548.4 |
122 | ″ | schema:familyName | Weiss |
123 | ″ | schema:givenName | J. D. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.011472757650.45 | schema:affiliation | grid-institutes:grid.262962.b |
127 | ″ | schema:familyName | Nikolo |
128 | ″ | schema:givenName | M. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.01154110202.55 | schema:affiliation | grid-institutes:grid.481548.4 |
132 | ″ | schema:familyName | Jiang |
133 | ″ | schema:givenName | J. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.012261435743.14 | schema:affiliation | grid-institutes:grid.481548.4 |
137 | ″ | schema:familyName | Shi |
138 | ″ | schema:givenName | X. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.0632002631.91 | schema:affiliation | grid-institutes:grid.481548.4 |
142 | ″ | schema:familyName | Hellstrom |
143 | ″ | schema:givenName | E. E. |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.0635107016.86 | schema:affiliation | grid-institutes:grid.481548.4 |
147 | ″ | schema:familyName | Choi |
148 | ″ | schema:givenName | E. S. |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86 |
150 | ″ | rdf:type | schema:Person |
151 | sg:pub.10.1007/978-1-4757-9059-7_78 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012446158 |
152 | ″ | ″ | https://doi.org/10.1007/978-1-4757-9059-7_78 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1007/978-4-431-68305-6_121 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036054329 |
155 | ″ | ″ | https://doi.org/10.1007/978-4-431-68305-6_121 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | grid-institutes:grid.262962.b | schema:alternateName | Physics Department, Saint Louis University, 63103, St. Louis, MO, USA |
158 | ″ | schema:name | Physics Department, Saint Louis University, 63103, St. Louis, MO, USA |
159 | ″ | rdf:type | schema:Organization |
160 | grid-institutes:grid.481548.4 | schema:alternateName | National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA |
161 | ″ | ″ | National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA |
162 | ″ | schema:name | National High Magnetic Field Laboratory, Applied Superconductivity Center, Florida State University, 32310, Tallahassee, FL, USA |
163 | ″ | ″ | National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA |
164 | ″ | rdf:type | schema:Organization |