Flux Dynamics, ac Losses, and Activation Energies in (Ba0.6K0.4)Fe2As2 Bulk Superconductor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-10-07

AUTHORS

M. Nikolo, X. Shi, E. S. Choi, J. Jiang, J. D. Weiss, E. E. Hellstrom

ABSTRACT

Flux pinning and thermally assisted flux flow are studied in a (Ba0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.6}$$\end{document}K0.4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.4})$$\end{document}Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}As2(Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}(T_\mathrm{c}$$\end{document}=38.3 K) bulk samples in magnetic fields up to 18 T via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency is increased from 75 to 1,997 Hz in all fields. The frequency (f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f)$$\end{document} shift of the susceptibility curves is modeled by the Anderson-Kim Arrhenius law f=f0exp(-Ea/kT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = f_{0}\mathrm{exp}(-E_\mathrm{a}{ /kT})$$\end{document} to determine flux activation energy Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{a}/k$$\end{document} as a function of ac field Hac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{ac}$$\end{document} and dc magnetic flux density μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{0} H_\mathrm{dc}$$\end{document}. Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{a}/k$$\end{document} ranges from 8,822 K (761 meV) at μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_{dc}$$\end{document} = 0 T to 1,100 K (95 meV) at 18 T for Hac=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{ac}=$$\end{document}80 A/m (1 Oe). The energies drop very quickly in a non-linear manner as μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_\mathrm{dc}$$\end{document} increases from 0 to 1 T, and more gradually, in a linear-like manner, as μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_\mathrm{dc}$$\end{document} increases further to 18 T, suggesting some kind of vortex transition. For ac fields of 400 A/m (5 Oe) and higher, the Arrhenius model starts breaking down, at around μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_{ \mathrm dc}$$\end{document} = 2 T. As the dc magnetic flux density increases further, this breakdown becomes significant for μ0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{0} H_\mathrm{dc}$$\end{document} = 15 and 18 T at ac fields of 400 A/m and higher. Extensive mapping of the de-pinning, or irreversibility, lines shows broad dependence on the magnitude of the ac field, frequency, in addition to the dc magnetic flux density. More... »

PAGES

188-199

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y

DOI

http://dx.doi.org/10.1007/s10909-014-1237-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049080081


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Department, Saint Louis University, 63103, St Louis, MO, USA", 
          "id": "http://www.grid.ac/institutes/grid.262962.b", 
          "name": [
            "Physics Department, Saint Louis University, 63103, St Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolo", 
        "givenName": "M.", 
        "id": "sg:person.011472757650.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "X.", 
        "id": "sg:person.012261435743.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "E. S.", 
        "id": "sg:person.0635107016.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "J.", 
        "id": "sg:person.01154110202.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "J. D.", 
        "id": "sg:person.01056616531.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellstrom", 
        "givenName": "E. E.", 
        "id": "sg:person.0632002631.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-4-431-68305-6_121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036054329", 
          "https://doi.org/10.1007/978-4-431-68305-6_121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9059-7_78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012446158", 
          "https://doi.org/10.1007/978-1-4757-9059-7_78"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10-07", 
    "datePublishedReg": "2014-10-07", 
    "description": "Flux pinning and thermally assisted flux flow are studied in a (Ba0.6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0.6}$$\\end{document}K0.4)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0.4})$$\\end{document}Fe2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2}$$\\end{document}As2(Tc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2}(T_\\mathrm{c}$$\\end{document}=38.3 K) bulk samples in magnetic fields up to 18 T via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency is increased from 75 to 1,997 Hz in all fields. The frequency (f)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f)$$\\end{document} shift of the susceptibility curves is modeled by the Anderson-Kim Arrhenius law f=f0exp(-Ea/kT)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f = f_{0}\\mathrm{exp}(-E_\\mathrm{a}{ /kT})$$\\end{document} to determine flux activation energy Ea/k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E_\\mathrm{a}/k$$\\end{document} as a function of ac field Hac\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_\\mathrm{ac}$$\\end{document} and dc magnetic flux density \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_\\mathrm{0} H_\\mathrm{dc}$$\\end{document}. Ea/k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E_\\mathrm{a}/k$$\\end{document} ranges from 8,822 K (761 meV) at \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0} H_{dc}$$\\end{document} = 0 T to 1,100 K (95 meV) at 18 T for Hac=\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_\\mathrm{ac}=$$\\end{document}80 A/m (1 Oe). The energies drop very quickly in a non-linear manner as \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0} H_\\mathrm{dc}$$\\end{document} increases from 0 to 1 T, and more gradually, in a linear-like manner, as \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0} H_\\mathrm{dc}$$\\end{document} increases further to 18 T, suggesting some kind of vortex transition. For ac fields of 400 A/m (5 Oe) and higher, the Arrhenius model starts breaking down, at around \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0} H_{ \\mathrm dc}$$\\end{document} = 2 T. As the dc magnetic flux density increases further, this breakdown becomes significant for \u03bc0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu _{0} H_\\mathrm{dc}$$\\end{document} = 15 and 18 T at ac fields of 400 A/m and higher. Extensive mapping of the de-pinning, or irreversibility, lines shows broad dependence on the magnitude of the ac field, frequency, in addition to the dc magnetic flux density.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10909-014-1237-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3479346", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3113501", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3484564", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "178"
      }
    ], 
    "keywords": [
      "magnetic flux density", 
      "ac field", 
      "flux density", 
      "linear-like manner", 
      "AC losses", 
      "flux pinning", 
      "flux flow", 
      "de-pinning", 
      "bulk superconductors", 
      "Arrhenius model", 
      "flux dynamics", 
      "activation energy", 
      "density", 
      "non-linear manner", 
      "susceptibility curves", 
      "field", 
      "energy", 
      "vortex transition", 
      "broad dependence", 
      "pinning", 
      "flow", 
      "irreversibility", 
      "superconductors", 
      "curves", 
      "Ea/", 
      "model", 
      "breakdown", 
      "extensive mapping", 
      "dependence", 
      "magnitude", 
      "frequency", 
      "increase", 
      "kind", 
      "transition", 
      "mapping", 
      "addition", 
      "dynamics", 
      "loss", 
      "shift", 
      "function", 
      "manner", 
      "lines"
    ], 
    "name": "Flux Dynamics, ac Losses, and Activation Energies in (Ba0.6K0.4)Fe2As2 Bulk Superconductor", 
    "pagination": "188-199", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049080081"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10909-014-1237-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10909-014-1237-y", 
      "https://app.dimensions.ai/details/publication/pub.1049080081"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_615.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10909-014-1237-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      22 PREDICATES      69 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10909-014-1237-y schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N0717a6e630214676a093d67da4600827
4 schema:citation sg:pub.10.1007/978-1-4757-9059-7_78
5 sg:pub.10.1007/978-4-431-68305-6_121
6 schema:datePublished 2014-10-07
7 schema:datePublishedReg 2014-10-07
8 schema:description Flux pinning and thermally assisted flux flow are studied in a (Ba0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.6}$$\end{document}K0.4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.4})$$\end{document}Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}As2(Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}(T_\mathrm{c}$$\end{document}=38.3 K) bulk samples in magnetic fields up to 18 T via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency is increased from 75 to 1,997 Hz in all fields. The frequency (f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f)$$\end{document} shift of the susceptibility curves is modeled by the Anderson-Kim Arrhenius law f=f0exp(-Ea/kT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = f_{0}\mathrm{exp}(-E_\mathrm{a}{ /kT})$$\end{document} to determine flux activation energy Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{a}/k$$\end{document} as a function of ac field Hac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{ac}$$\end{document} and dc magnetic flux density μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{0} H_\mathrm{dc}$$\end{document}. Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{a}/k$$\end{document} ranges from 8,822 K (761 meV) at μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_{dc}$$\end{document} = 0 T to 1,100 K (95 meV) at 18 T for Hac=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{ac}=$$\end{document}80 A/m (1 Oe). The energies drop very quickly in a non-linear manner as μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_\mathrm{dc}$$\end{document} increases from 0 to 1 T, and more gradually, in a linear-like manner, as μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_\mathrm{dc}$$\end{document} increases further to 18 T, suggesting some kind of vortex transition. For ac fields of 400 A/m (5 Oe) and higher, the Arrhenius model starts breaking down, at around μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_{ \mathrm dc}$$\end{document} = 2 T. As the dc magnetic flux density increases further, this breakdown becomes significant for μ0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{0} H_\mathrm{dc}$$\end{document} = 15 and 18 T at ac fields of 400 A/m and higher. Extensive mapping of the de-pinning, or irreversibility, lines shows broad dependence on the magnitude of the ac field, frequency, in addition to the dc magnetic flux density.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N255f31d563b144e1b3cad3833280b509
13 N2b0afa7e0de94ab99c0a6af2a3caa6e4
14 sg:journal.1030474
15 schema:keywords AC losses
16 Arrhenius model
17 Ea/
18 ac field
19 activation energy
20 addition
21 breakdown
22 broad dependence
23 bulk superconductors
24 curves
25 de-pinning
26 density
27 dependence
28 dynamics
29 energy
30 extensive mapping
31 field
32 flow
33 flux density
34 flux dynamics
35 flux flow
36 flux pinning
37 frequency
38 function
39 increase
40 irreversibility
41 kind
42 linear-like manner
43 lines
44 loss
45 magnetic flux density
46 magnitude
47 manner
48 mapping
49 model
50 non-linear manner
51 pinning
52 shift
53 superconductors
54 susceptibility curves
55 transition
56 vortex transition
57 schema:name Flux Dynamics, ac Losses, and Activation Energies in (Ba0.6K0.4)Fe2As2 Bulk Superconductor
58 schema:pagination 188-199
59 schema:productId N6a5f18bac5db4d85b9dc84291421e391
60 N6a7bd341686743eb919b092970df05fe
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049080081
62 https://doi.org/10.1007/s10909-014-1237-y
63 schema:sdDatePublished 2022-05-20T07:29
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nbe254870887547329b081ebec8288eb5
66 schema:url https://doi.org/10.1007/s10909-014-1237-y
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N014d340bd376422cb21c7f206ceb2e0d rdf:first sg:person.0632002631.91
71 rdf:rest rdf:nil
72 N0717a6e630214676a093d67da4600827 rdf:first sg:person.011472757650.45
73 rdf:rest Nefd97ee5fa2c41f19f6dddff0116a223
74 N255f31d563b144e1b3cad3833280b509 schema:volumeNumber 178
75 rdf:type schema:PublicationVolume
76 N2b0afa7e0de94ab99c0a6af2a3caa6e4 schema:issueNumber 3-4
77 rdf:type schema:PublicationIssue
78 N3fc7d1cfd510487ea2542460dac92d1d rdf:first sg:person.01154110202.55
79 rdf:rest Ne7627b2113f4457b8f196c9d27d8642b
80 N6a5f18bac5db4d85b9dc84291421e391 schema:name doi
81 schema:value 10.1007/s10909-014-1237-y
82 rdf:type schema:PropertyValue
83 N6a7bd341686743eb919b092970df05fe schema:name dimensions_id
84 schema:value pub.1049080081
85 rdf:type schema:PropertyValue
86 Nbe254870887547329b081ebec8288eb5 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nc667cc3e6cbf4539966174fc63472e07 rdf:first sg:person.0635107016.86
89 rdf:rest N3fc7d1cfd510487ea2542460dac92d1d
90 Ne7627b2113f4457b8f196c9d27d8642b rdf:first sg:person.01056616531.73
91 rdf:rest N014d340bd376422cb21c7f206ceb2e0d
92 Nefd97ee5fa2c41f19f6dddff0116a223 rdf:first sg:person.012261435743.14
93 rdf:rest Nc667cc3e6cbf4539966174fc63472e07
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
98 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
99 rdf:type schema:DefinedTerm
100 sg:grant.3113501 http://pending.schema.org/fundedItem sg:pub.10.1007/s10909-014-1237-y
101 rdf:type schema:MonetaryGrant
102 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1007/s10909-014-1237-y
103 rdf:type schema:MonetaryGrant
104 sg:grant.3484564 http://pending.schema.org/fundedItem sg:pub.10.1007/s10909-014-1237-y
105 rdf:type schema:MonetaryGrant
106 sg:journal.1030474 schema:issn 0022-2291
107 1573-7357
108 schema:name Journal of Low Temperature Physics
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.01056616531.73 schema:affiliation grid-institutes:grid.481548.4
112 schema:familyName Weiss
113 schema:givenName J. D.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73
115 rdf:type schema:Person
116 sg:person.011472757650.45 schema:affiliation grid-institutes:grid.262962.b
117 schema:familyName Nikolo
118 schema:givenName M.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45
120 rdf:type schema:Person
121 sg:person.01154110202.55 schema:affiliation grid-institutes:grid.481548.4
122 schema:familyName Jiang
123 schema:givenName J.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55
125 rdf:type schema:Person
126 sg:person.012261435743.14 schema:affiliation grid-institutes:grid.481548.4
127 schema:familyName Shi
128 schema:givenName X.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14
130 rdf:type schema:Person
131 sg:person.0632002631.91 schema:affiliation grid-institutes:grid.481548.4
132 schema:familyName Hellstrom
133 schema:givenName E. E.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91
135 rdf:type schema:Person
136 sg:person.0635107016.86 schema:affiliation grid-institutes:grid.481548.4
137 schema:familyName Choi
138 schema:givenName E. S.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86
140 rdf:type schema:Person
141 sg:pub.10.1007/978-1-4757-9059-7_78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012446158
142 https://doi.org/10.1007/978-1-4757-9059-7_78
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-4-431-68305-6_121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036054329
145 https://doi.org/10.1007/978-4-431-68305-6_121
146 rdf:type schema:CreativeWork
147 grid-institutes:grid.262962.b schema:alternateName Physics Department, Saint Louis University, 63103, St Louis, MO, USA
148 schema:name Physics Department, Saint Louis University, 63103, St Louis, MO, USA
149 rdf:type schema:Organization
150 grid-institutes:grid.481548.4 schema:alternateName Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
151 National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
152 schema:name Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
153 National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...