Ontology type: schema:ScholarlyArticle
2014-10-07
AUTHORSM. Nikolo, X. Shi, E. S. Choi, J. Jiang, J. D. Weiss, E. E. Hellstrom
ABSTRACTFlux pinning and thermally assisted flux flow are studied in a (Ba0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.6}$$\end{document}K0.4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.4})$$\end{document}Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}As2(Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}(T_\mathrm{c}$$\end{document}=38.3 K) bulk samples in magnetic fields up to 18 T via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency is increased from 75 to 1,997 Hz in all fields. The frequency (f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f)$$\end{document} shift of the susceptibility curves is modeled by the Anderson-Kim Arrhenius law f=f0exp(-Ea/kT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = f_{0}\mathrm{exp}(-E_\mathrm{a}{ /kT})$$\end{document} to determine flux activation energy Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{a}/k$$\end{document} as a function of ac field Hac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{ac}$$\end{document} and dc magnetic flux density μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{0} H_\mathrm{dc}$$\end{document}. Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{a}/k$$\end{document} ranges from 8,822 K (761 meV) at μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_{dc}$$\end{document} = 0 T to 1,100 K (95 meV) at 18 T for Hac=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{ac}=$$\end{document}80 A/m (1 Oe). The energies drop very quickly in a non-linear manner as μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_\mathrm{dc}$$\end{document} increases from 0 to 1 T, and more gradually, in a linear-like manner, as μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_\mathrm{dc}$$\end{document} increases further to 18 T, suggesting some kind of vortex transition. For ac fields of 400 A/m (5 Oe) and higher, the Arrhenius model starts breaking down, at around μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_{ \mathrm dc}$$\end{document} = 2 T. As the dc magnetic flux density increases further, this breakdown becomes significant for μ0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{0} H_\mathrm{dc}$$\end{document} = 15 and 18 T at ac fields of 400 A/m and higher. Extensive mapping of the de-pinning, or irreversibility, lines shows broad dependence on the magnitude of the ac field, frequency, in addition to the dc magnetic flux density. More... »
PAGES188-199
http://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y
DOIhttp://dx.doi.org/10.1007/s10909-014-1237-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1049080081
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Physics Department, Saint Louis University, 63103, St Louis, MO, USA",
"id": "http://www.grid.ac/institutes/grid.262962.b",
"name": [
"Physics Department, Saint Louis University, 63103, St Louis, MO, USA"
],
"type": "Organization"
},
"familyName": "Nikolo",
"givenName": "M.",
"id": "sg:person.011472757650.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Shi",
"givenName": "X.",
"id": "sg:person.012261435743.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Choi",
"givenName": "E. S.",
"id": "sg:person.0635107016.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Jiang",
"givenName": "J.",
"id": "sg:person.01154110202.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Weiss",
"givenName": "J. D.",
"id": "sg:person.01056616531.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA",
"id": "http://www.grid.ac/institutes/grid.481548.4",
"name": [
"Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
],
"type": "Organization"
},
"familyName": "Hellstrom",
"givenName": "E. E.",
"id": "sg:person.0632002631.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-4-431-68305-6_121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036054329",
"https://doi.org/10.1007/978-4-431-68305-6_121"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-9059-7_78",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012446158",
"https://doi.org/10.1007/978-1-4757-9059-7_78"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-10-07",
"datePublishedReg": "2014-10-07",
"description": "Flux pinning and thermally assisted flux flow are studied in a (Ba0.6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0.6}$$\\end{document}K0.4)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0.4})$$\\end{document}Fe2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2}$$\\end{document}As2(Tc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2}(T_\\mathrm{c}$$\\end{document}=38.3 K) bulk samples in magnetic fields up to 18 T via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency is increased from 75 to 1,997 Hz in all fields. The frequency (f)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f)$$\\end{document} shift of the susceptibility curves is modeled by the Anderson-Kim Arrhenius law f=f0exp(-Ea/kT)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f = f_{0}\\mathrm{exp}(-E_\\mathrm{a}{ /kT})$$\\end{document} to determine flux activation energy Ea/k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E_\\mathrm{a}/k$$\\end{document} as a function of ac field Hac\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_\\mathrm{ac}$$\\end{document} and dc magnetic flux density \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_\\mathrm{0} H_\\mathrm{dc}$$\\end{document}. Ea/k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E_\\mathrm{a}/k$$\\end{document} ranges from 8,822 K (761 meV) at \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0} H_{dc}$$\\end{document} = 0 T to 1,100 K (95 meV) at 18 T for Hac=\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_\\mathrm{ac}=$$\\end{document}80 A/m (1 Oe). The energies drop very quickly in a non-linear manner as \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0} H_\\mathrm{dc}$$\\end{document} increases from 0 to 1 T, and more gradually, in a linear-like manner, as \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0} H_\\mathrm{dc}$$\\end{document} increases further to 18 T, suggesting some kind of vortex transition. For ac fields of 400 A/m (5 Oe) and higher, the Arrhenius model starts breaking down, at around \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu $$\\end{document}0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{0} H_{ \\mathrm dc}$$\\end{document} = 2 T. As the dc magnetic flux density increases further, this breakdown becomes significant for \u03bc0Hdc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu _{0} H_\\mathrm{dc}$$\\end{document} = 15 and 18 T at ac fields of 400 A/m and higher. Extensive mapping of the de-pinning, or irreversibility, lines shows broad dependence on the magnitude of the ac field, frequency, in addition to the dc magnetic flux density.",
"genre": "article",
"id": "sg:pub.10.1007/s10909-014-1237-y",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.3479346",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3113501",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3484564",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1030474",
"issn": [
"0022-2291",
"1573-7357"
],
"name": "Journal of Low Temperature Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "178"
}
],
"keywords": [
"magnetic flux density",
"ac field",
"flux density",
"linear-like manner",
"AC losses",
"flux pinning",
"flux flow",
"de-pinning",
"bulk superconductors",
"Arrhenius model",
"flux dynamics",
"activation energy",
"density",
"non-linear manner",
"susceptibility curves",
"field",
"energy",
"vortex transition",
"broad dependence",
"pinning",
"flow",
"irreversibility",
"superconductors",
"curves",
"Ea/",
"model",
"breakdown",
"extensive mapping",
"dependence",
"magnitude",
"frequency",
"increase",
"kind",
"transition",
"mapping",
"addition",
"dynamics",
"loss",
"shift",
"function",
"manner",
"lines"
],
"name": "Flux Dynamics, ac Losses, and Activation Energies in (Ba0.6K0.4)Fe2As2 Bulk Superconductor",
"pagination": "188-199",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1049080081"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10909-014-1237-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10909-014-1237-y",
"https://app.dimensions.ai/details/publication/pub.1049080081"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_615.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10909-014-1237-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-014-1237-y'
This table displays all metadata directly associated to this object as RDF triples.
154 TRIPLES
22 PREDICATES
69 URIs
59 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10909-014-1237-y | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N0717a6e630214676a093d67da4600827 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4757-9059-7_78 |
5 | ″ | ″ | sg:pub.10.1007/978-4-431-68305-6_121 |
6 | ″ | schema:datePublished | 2014-10-07 |
7 | ″ | schema:datePublishedReg | 2014-10-07 |
8 | ″ | schema:description | Flux pinning and thermally assisted flux flow are studied in a (Ba0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.6}$$\end{document}K0.4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.4})$$\end{document}Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}As2(Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}(T_\mathrm{c}$$\end{document}=38.3 K) bulk samples in magnetic fields up to 18 T via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency is increased from 75 to 1,997 Hz in all fields. The frequency (f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f)$$\end{document} shift of the susceptibility curves is modeled by the Anderson-Kim Arrhenius law f=f0exp(-Ea/kT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = f_{0}\mathrm{exp}(-E_\mathrm{a}{ /kT})$$\end{document} to determine flux activation energy Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{a}/k$$\end{document} as a function of ac field Hac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{ac}$$\end{document} and dc magnetic flux density μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{0} H_\mathrm{dc}$$\end{document}. Ea/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{a}/k$$\end{document} ranges from 8,822 K (761 meV) at μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_{dc}$$\end{document} = 0 T to 1,100 K (95 meV) at 18 T for Hac=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathrm{ac}=$$\end{document}80 A/m (1 Oe). The energies drop very quickly in a non-linear manner as μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_\mathrm{dc}$$\end{document} increases from 0 to 1 T, and more gradually, in a linear-like manner, as μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_\mathrm{dc}$$\end{document} increases further to 18 T, suggesting some kind of vortex transition. For ac fields of 400 A/m (5 Oe) and higher, the Arrhenius model starts breaking down, at around μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0} H_{ \mathrm dc}$$\end{document} = 2 T. As the dc magnetic flux density increases further, this breakdown becomes significant for μ0Hdc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{0} H_\mathrm{dc}$$\end{document} = 15 and 18 T at ac fields of 400 A/m and higher. Extensive mapping of the de-pinning, or irreversibility, lines shows broad dependence on the magnitude of the ac field, frequency, in addition to the dc magnetic flux density. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N255f31d563b144e1b3cad3833280b509 |
13 | ″ | ″ | N2b0afa7e0de94ab99c0a6af2a3caa6e4 |
14 | ″ | ″ | sg:journal.1030474 |
15 | ″ | schema:keywords | AC losses |
16 | ″ | ″ | Arrhenius model |
17 | ″ | ″ | Ea/ |
18 | ″ | ″ | ac field |
19 | ″ | ″ | activation energy |
20 | ″ | ″ | addition |
21 | ″ | ″ | breakdown |
22 | ″ | ″ | broad dependence |
23 | ″ | ″ | bulk superconductors |
24 | ″ | ″ | curves |
25 | ″ | ″ | de-pinning |
26 | ″ | ″ | density |
27 | ″ | ″ | dependence |
28 | ″ | ″ | dynamics |
29 | ″ | ″ | energy |
30 | ″ | ″ | extensive mapping |
31 | ″ | ″ | field |
32 | ″ | ″ | flow |
33 | ″ | ″ | flux density |
34 | ″ | ″ | flux dynamics |
35 | ″ | ″ | flux flow |
36 | ″ | ″ | flux pinning |
37 | ″ | ″ | frequency |
38 | ″ | ″ | function |
39 | ″ | ″ | increase |
40 | ″ | ″ | irreversibility |
41 | ″ | ″ | kind |
42 | ″ | ″ | linear-like manner |
43 | ″ | ″ | lines |
44 | ″ | ″ | loss |
45 | ″ | ″ | magnetic flux density |
46 | ″ | ″ | magnitude |
47 | ″ | ″ | manner |
48 | ″ | ″ | mapping |
49 | ″ | ″ | model |
50 | ″ | ″ | non-linear manner |
51 | ″ | ″ | pinning |
52 | ″ | ″ | shift |
53 | ″ | ″ | superconductors |
54 | ″ | ″ | susceptibility curves |
55 | ″ | ″ | transition |
56 | ″ | ″ | vortex transition |
57 | ″ | schema:name | Flux Dynamics, ac Losses, and Activation Energies in (Ba0.6K0.4)Fe2As2 Bulk Superconductor |
58 | ″ | schema:pagination | 188-199 |
59 | ″ | schema:productId | N6a5f18bac5db4d85b9dc84291421e391 |
60 | ″ | ″ | N6a7bd341686743eb919b092970df05fe |
61 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049080081 |
62 | ″ | ″ | https://doi.org/10.1007/s10909-014-1237-y |
63 | ″ | schema:sdDatePublished | 2022-05-20T07:29 |
64 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
65 | ″ | schema:sdPublisher | Nbe254870887547329b081ebec8288eb5 |
66 | ″ | schema:url | https://doi.org/10.1007/s10909-014-1237-y |
67 | ″ | sgo:license | sg:explorer/license/ |
68 | ″ | sgo:sdDataset | articles |
69 | ″ | rdf:type | schema:ScholarlyArticle |
70 | N014d340bd376422cb21c7f206ceb2e0d | rdf:first | sg:person.0632002631.91 |
71 | ″ | rdf:rest | rdf:nil |
72 | N0717a6e630214676a093d67da4600827 | rdf:first | sg:person.011472757650.45 |
73 | ″ | rdf:rest | Nefd97ee5fa2c41f19f6dddff0116a223 |
74 | N255f31d563b144e1b3cad3833280b509 | schema:volumeNumber | 178 |
75 | ″ | rdf:type | schema:PublicationVolume |
76 | N2b0afa7e0de94ab99c0a6af2a3caa6e4 | schema:issueNumber | 3-4 |
77 | ″ | rdf:type | schema:PublicationIssue |
78 | N3fc7d1cfd510487ea2542460dac92d1d | rdf:first | sg:person.01154110202.55 |
79 | ″ | rdf:rest | Ne7627b2113f4457b8f196c9d27d8642b |
80 | N6a5f18bac5db4d85b9dc84291421e391 | schema:name | doi |
81 | ″ | schema:value | 10.1007/s10909-014-1237-y |
82 | ″ | rdf:type | schema:PropertyValue |
83 | N6a7bd341686743eb919b092970df05fe | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1049080081 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | Nbe254870887547329b081ebec8288eb5 | schema:name | Springer Nature - SN SciGraph project |
87 | ″ | rdf:type | schema:Organization |
88 | Nc667cc3e6cbf4539966174fc63472e07 | rdf:first | sg:person.0635107016.86 |
89 | ″ | rdf:rest | N3fc7d1cfd510487ea2542460dac92d1d |
90 | Ne7627b2113f4457b8f196c9d27d8642b | rdf:first | sg:person.01056616531.73 |
91 | ″ | rdf:rest | N014d340bd376422cb21c7f206ceb2e0d |
92 | Nefd97ee5fa2c41f19f6dddff0116a223 | rdf:first | sg:person.012261435743.14 |
93 | ″ | rdf:rest | Nc667cc3e6cbf4539966174fc63472e07 |
94 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Physical Sciences |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | sg:grant.3113501 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s10909-014-1237-y |
101 | ″ | rdf:type | schema:MonetaryGrant |
102 | sg:grant.3479346 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s10909-014-1237-y |
103 | ″ | rdf:type | schema:MonetaryGrant |
104 | sg:grant.3484564 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s10909-014-1237-y |
105 | ″ | rdf:type | schema:MonetaryGrant |
106 | sg:journal.1030474 | schema:issn | 0022-2291 |
107 | ″ | ″ | 1573-7357 |
108 | ″ | schema:name | Journal of Low Temperature Physics |
109 | ″ | schema:publisher | Springer Nature |
110 | ″ | rdf:type | schema:Periodical |
111 | sg:person.01056616531.73 | schema:affiliation | grid-institutes:grid.481548.4 |
112 | ″ | schema:familyName | Weiss |
113 | ″ | schema:givenName | J. D. |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.011472757650.45 | schema:affiliation | grid-institutes:grid.262962.b |
117 | ″ | schema:familyName | Nikolo |
118 | ″ | schema:givenName | M. |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45 |
120 | ″ | rdf:type | schema:Person |
121 | sg:person.01154110202.55 | schema:affiliation | grid-institutes:grid.481548.4 |
122 | ″ | schema:familyName | Jiang |
123 | ″ | schema:givenName | J. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.012261435743.14 | schema:affiliation | grid-institutes:grid.481548.4 |
127 | ″ | schema:familyName | Shi |
128 | ″ | schema:givenName | X. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.0632002631.91 | schema:affiliation | grid-institutes:grid.481548.4 |
132 | ″ | schema:familyName | Hellstrom |
133 | ″ | schema:givenName | E. E. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.0635107016.86 | schema:affiliation | grid-institutes:grid.481548.4 |
137 | ″ | schema:familyName | Choi |
138 | ″ | schema:givenName | E. S. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86 |
140 | ″ | rdf:type | schema:Person |
141 | sg:pub.10.1007/978-1-4757-9059-7_78 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012446158 |
142 | ″ | ″ | https://doi.org/10.1007/978-1-4757-9059-7_78 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1007/978-4-431-68305-6_121 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036054329 |
145 | ″ | ″ | https://doi.org/10.1007/978-4-431-68305-6_121 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | grid-institutes:grid.262962.b | schema:alternateName | Physics Department, Saint Louis University, 63103, St Louis, MO, USA |
148 | ″ | schema:name | Physics Department, Saint Louis University, 63103, St Louis, MO, USA |
149 | ″ | rdf:type | schema:Organization |
150 | grid-institutes:grid.481548.4 | schema:alternateName | Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA |
151 | ″ | ″ | National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA |
152 | ″ | schema:name | Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA |
153 | ″ | ″ | National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA |
154 | ″ | rdf:type | schema:Organization |