Pulse Shape Analysis with Scintillating Bolometers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-05

AUTHORS

L. Gironi

ABSTRACT

Among the detectors used for rare event searches, such as neutrinoless Double Beta Decay (0νDBD) and Dark Matter experiments, bolometers are very promising because of their favorable properties (excellent energy resolution, high detector efficiency, a wide choice of different materials used as absorber, …). However, up to now, the actual interesting possibility to identify the interacting particle, and thus to greatly reduce the background, can be fulfilled only with a double read-out (i.e. the simultaneous and independent read out of heat and scintillation light or heat and ionization). This double read-out could greatly complicate the assembly of a huge, multi-detector array, such as CUORE and EURECA. The possibility to recognize the interacting particle through the shape of the thermal pulse is then clearly a very interesting opportunity. While detailed analyses of the signal time development in purely thermal detectors have not produced so far interesting results, similar analyses on macro-bolometers (∼10–500 g) built with scintillating crystals showed that it is possible to distinguish between an electron or γ-ray and an α particle interaction (i.e. the main source of background for 0νDBD experiments based on the bolometric technique). Results on pulse shape analysis of a CaMoO4 crystal operated as bolometer are reported as an example. An explanation of this behavior, based on the energy partition in the heat and scintillation channels, is also presented. More... »

PAGES

504-509

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10909-012-0478-x

DOI

http://dx.doi.org/10.1007/s10909-012-0478-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041786290


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Milano-Bicocca", 
          "id": "https://www.grid.ac/institutes/grid.7563.7", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 degli Studi di Milano-Bicocca, 20126, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gironi", 
        "givenName": "L.", 
        "id": "sg:person.015257675045.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257675045.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/revmodphys.80.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003259697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003259697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.astropartphys.2005.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005020089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.astropartphys.2011.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012405620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.nucl.46.1.471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018167532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063778806120155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018319743", 
          "https://doi.org/10.1134/s1063778806120155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/46/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019753427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/46/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019753427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0920-5632(92)90178-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021431538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0920-5632(92)90178-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021431538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.astropartphys.2010.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022206463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2003.07.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027841276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2009.10.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030468149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysbps.2007.08.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031618370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2009-10805-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033357816", 
          "https://doi.org/10.1140/epja/i2009-10805-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.200945500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034916537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.200945500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034916537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(03)00630-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040665529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(03)00630-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040665529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/36/365219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045049758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2007-10577-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045398264", 
          "https://doi.org/10.1140/epja/i2007-10577-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/5/11/p11007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048820569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/5/11/p11007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048820569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2007.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051050653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.astropartphys.2010.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051543835"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05", 
    "datePublishedReg": "2012-05-01", 
    "description": "Among the detectors used for rare event searches, such as neutrinoless Double Beta Decay (0\u03bdDBD) and Dark Matter experiments, bolometers are very promising because of their favorable properties (excellent energy resolution, high detector efficiency, a wide choice of different materials used as absorber, \u2026). However, up to now, the actual interesting possibility to identify the interacting particle, and thus to greatly reduce the background, can be fulfilled only with a double read-out (i.e. the simultaneous and independent read out of heat and scintillation light or heat and ionization). This double read-out could greatly complicate the assembly of a huge, multi-detector array, such as CUORE and EURECA. The possibility to recognize the interacting particle through the shape of the thermal pulse is then clearly a very interesting opportunity. While detailed analyses of the signal time development in purely thermal detectors have not produced so far interesting results, similar analyses on macro-bolometers (\u223c10\u2013500 g) built with scintillating crystals showed that it is possible to distinguish between an electron or \u03b3-ray and an \u03b1 particle interaction (i.e. the main source of background for 0\u03bdDBD experiments based on the bolometric technique). Results on pulse shape analysis of a CaMoO4 crystal operated as bolometer are reported as an example. An explanation of this behavior, based on the energy partition in the heat and scintillation channels, is also presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10909-012-0478-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "167"
      }
    ], 
    "name": "Pulse Shape Analysis with Scintillating Bolometers", 
    "pagination": "504-509", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c70d4b4bc4aabffe9ee0f0916bdb0b16839328e2e7d4a0aabaedc93105db2be3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10909-012-0478-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041786290"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10909-012-0478-x", 
      "https://app.dimensions.ai/details/publication/pub.1041786290"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10909-012-0478-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-012-0478-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-012-0478-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-012-0478-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-012-0478-x'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10909-012-0478-x schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N5210d667641d443a882f5fb2561e6109
4 schema:citation sg:pub.10.1134/s1063778806120155
5 sg:pub.10.1140/epja/i2007-10577-0
6 sg:pub.10.1140/epja/i2009-10805-7
7 https://doi.org/10.1002/pssb.200945500
8 https://doi.org/10.1016/0920-5632(92)90178-u
9 https://doi.org/10.1016/j.astropartphys.2005.01.006
10 https://doi.org/10.1016/j.astropartphys.2010.06.009
11 https://doi.org/10.1016/j.astropartphys.2010.09.004
12 https://doi.org/10.1016/j.astropartphys.2011.02.006
13 https://doi.org/10.1016/j.nima.2003.07.067
14 https://doi.org/10.1016/j.nima.2007.09.020
15 https://doi.org/10.1016/j.nima.2009.10.080
16 https://doi.org/10.1016/j.nuclphysbps.2007.08.043
17 https://doi.org/10.1016/s0370-2693(03)00630-0
18 https://doi.org/10.1088/0953-8984/17/46/005
19 https://doi.org/10.1088/0953-8984/20/36/365219
20 https://doi.org/10.1088/1748-0221/5/11/p11007
21 https://doi.org/10.1103/revmodphys.80.481
22 https://doi.org/10.1146/annurev.nucl.46.1.471
23 schema:datePublished 2012-05
24 schema:datePublishedReg 2012-05-01
25 schema:description Among the detectors used for rare event searches, such as neutrinoless Double Beta Decay (0νDBD) and Dark Matter experiments, bolometers are very promising because of their favorable properties (excellent energy resolution, high detector efficiency, a wide choice of different materials used as absorber, …). However, up to now, the actual interesting possibility to identify the interacting particle, and thus to greatly reduce the background, can be fulfilled only with a double read-out (i.e. the simultaneous and independent read out of heat and scintillation light or heat and ionization). This double read-out could greatly complicate the assembly of a huge, multi-detector array, such as CUORE and EURECA. The possibility to recognize the interacting particle through the shape of the thermal pulse is then clearly a very interesting opportunity. While detailed analyses of the signal time development in purely thermal detectors have not produced so far interesting results, similar analyses on macro-bolometers (∼10–500 g) built with scintillating crystals showed that it is possible to distinguish between an electron or γ-ray and an α particle interaction (i.e. the main source of background for 0νDBD experiments based on the bolometric technique). Results on pulse shape analysis of a CaMoO4 crystal operated as bolometer are reported as an example. An explanation of this behavior, based on the energy partition in the heat and scintillation channels, is also presented.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N4e6fbfc0b2314370ac93c92aad13bced
30 N9d02d061982e418f83240597a10d6538
31 sg:journal.1030474
32 schema:name Pulse Shape Analysis with Scintillating Bolometers
33 schema:pagination 504-509
34 schema:productId N01838d074a354d829439e1853469c684
35 Na851d29dc65e4a1ebd4140a5a0547ba9
36 Nb7f2f5c471eb412f93dec4f772f0ff55
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041786290
38 https://doi.org/10.1007/s10909-012-0478-x
39 schema:sdDatePublished 2019-04-11T01:11
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N72b0f4f4e26c4b4c89c448155bc674bc
42 schema:url http://link.springer.com/10.1007%2Fs10909-012-0478-x
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N01838d074a354d829439e1853469c684 schema:name readcube_id
47 schema:value c70d4b4bc4aabffe9ee0f0916bdb0b16839328e2e7d4a0aabaedc93105db2be3
48 rdf:type schema:PropertyValue
49 N4e6fbfc0b2314370ac93c92aad13bced schema:volumeNumber 167
50 rdf:type schema:PublicationVolume
51 N5210d667641d443a882f5fb2561e6109 rdf:first sg:person.015257675045.88
52 rdf:rest rdf:nil
53 N72b0f4f4e26c4b4c89c448155bc674bc schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N9d02d061982e418f83240597a10d6538 schema:issueNumber 3-4
56 rdf:type schema:PublicationIssue
57 Na851d29dc65e4a1ebd4140a5a0547ba9 schema:name dimensions_id
58 schema:value pub.1041786290
59 rdf:type schema:PropertyValue
60 Nb7f2f5c471eb412f93dec4f772f0ff55 schema:name doi
61 schema:value 10.1007/s10909-012-0478-x
62 rdf:type schema:PropertyValue
63 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
64 schema:name Physical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
67 schema:name Other Physical Sciences
68 rdf:type schema:DefinedTerm
69 sg:journal.1030474 schema:issn 0022-2291
70 1573-7357
71 schema:name Journal of Low Temperature Physics
72 rdf:type schema:Periodical
73 sg:person.015257675045.88 schema:affiliation https://www.grid.ac/institutes/grid.7563.7
74 schema:familyName Gironi
75 schema:givenName L.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257675045.88
77 rdf:type schema:Person
78 sg:pub.10.1134/s1063778806120155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018319743
79 https://doi.org/10.1134/s1063778806120155
80 rdf:type schema:CreativeWork
81 sg:pub.10.1140/epja/i2007-10577-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045398264
82 https://doi.org/10.1140/epja/i2007-10577-0
83 rdf:type schema:CreativeWork
84 sg:pub.10.1140/epja/i2009-10805-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033357816
85 https://doi.org/10.1140/epja/i2009-10805-7
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/pssb.200945500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034916537
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0920-5632(92)90178-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1021431538
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.astropartphys.2005.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005020089
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.astropartphys.2010.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051543835
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.astropartphys.2010.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022206463
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.astropartphys.2011.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012405620
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.nima.2003.07.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027841276
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.nima.2007.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051050653
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.nima.2009.10.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030468149
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.nuclphysbps.2007.08.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031618370
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0370-2693(03)00630-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040665529
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1088/0953-8984/17/46/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019753427
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1088/0953-8984/20/36/365219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045049758
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/1748-0221/5/11/p11007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048820569
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/revmodphys.80.481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003259697
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1146/annurev.nucl.46.1.471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018167532
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.7563.7 schema:alternateName University of Milano-Bicocca
120 schema:name Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, 20126, Milano, Italy
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...