Theory of Decay of Superfluid Turbulence in the Low-Temperature Limit View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-09

AUTHORS

E. V. Kozik, B. V. Svistunov

ABSTRACT

We review the theory of relaxational kinetics of superfluid turbulence—a tangle of quantized vortex lines—in the limit of very low temperatures when the motion of vortices is conservative. While certain important aspects of the decay kinetics depend on whether the tangle is non-structured, like the one corresponding to the Kibble-Zurek picture, or essentially polarized, like the one that emulates the Richardson-Kolmogorov regime of classical turbulence, there are common fundamental features. In both cases, there exists an asymptotic range in the wavenumber space where the energy flux is supported by the cascade of Kelvin waves (kelvons)—precessing distortions propagating along the vortex filaments. At large enough wavenumbers, the Kelvin-wave cascade is supported by three-kelvon elastic scattering. At zero temperature, the dissipative cutoff of the Kelvin-wave cascade is due to the emission of phonons, in which an elementary process converts two kelvons with almost opposite momenta into one bulk phonon. Along with the standard set of conservation laws, a crucial role in the theory of low-temperature vortex dynamics is played by the fact of integrability of the local induction approximation (LIA) controlled by the parameter Λ=ln (λ/a0), with λ the characteristic kelvon wavelength and a0 the vortex core radius. While excluding a straightforward onset of the pure three-kelvon cascade, the integrability of LIA does not plug the cascade because of the natural availability of the kinetic channels associated with vortex line reconnections. We argue that the crossover from Richardson-Kolmogorov to the Kelvin-wave cascade is due to eventual dominance of local induction of a single line over the collective induction of polarized eddies, which causes the breakdown of classical-fluid regime and gives rise to a reconnection-driven inertial range. More... »

PAGES

215-267

References to SciGraph publications

  • 1985-10. Cosmological experiments in superfluid helium? in NATURE
  • 2002-09. Quantum Turbulence in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 2008-10. Spontaneous vortices in the formation of Bose–Einstein condensates in NATURE
  • 2008-12. Gradual Eddy-Wave Crossover in Superfluid Turbulence in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 2006-11. An Introduction to Quantum Turbulence in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 1983. Functional Integrals in Quantum Field Theory and Statistical Physics in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10909-009-9914-y

    DOI

    http://dx.doi.org/10.1007/s10909-009-9914-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027400038


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Theoretische Physik, ETH Z\u00fcrich, 8093, Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kozik", 
            "givenName": "E. V.", 
            "id": "sg:person.01217762103.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217762103.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kurchatov Institute", 
              "id": "https://www.grid.ac/institutes/grid.18919.38", 
              "name": [
                "Department of Physics, University of Massachusetts, 01003, Amherst, MA, USA", 
                "Russian Research Center \u201cKurchatov Institute\u201d, 123182, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Svistunov", 
            "givenName": "B. V.", 
            "id": "sg:person.01265603346.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265603346.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1098/rspa.1957.0071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003511271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1957.0191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005524701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.11751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006997173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.11751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006997173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.69.053617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007335837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.69.053617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007335837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10909-006-9240-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007937180", 
              "https://doi.org/10.1007/s10909-006-9240-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1958.0007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008467189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.245301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010159346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.245301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010159346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/317505a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010182171", 
              "https://doi.org/10.1038/317505a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physd.2008.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013768880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014223021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014223021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.55.485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014472270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.55.485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014472270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.135301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015077750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.135301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015077750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.024520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019813445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.024520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019813445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.100403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020406564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.100403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020406564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.73.092501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021646333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.73.092501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021646333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019695418590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024505897", 
              "https://doi.org/10.1023/a:1019695418590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10909-008-9844-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026705325", 
              "https://doi.org/10.1007/s10909-008-9844-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.215302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027032714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.215302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027032714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.214509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029159328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.214509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029159328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.064502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029166785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.064502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029166785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4526(99)01442-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036262052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.172505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037780733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.172505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037780733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9991(88)90145-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038978709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.035301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039401440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.035301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039401440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040794405", 
              "https://doi.org/10.1038/nature07334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.180401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041683730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.180401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041683730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.060502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042819327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.060502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042819327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0079-6417(08)60077-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045576254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/9/8/029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045952638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1956.0215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046342441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1956.0214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050526142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.025301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051663161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.025301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051663161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112065000915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053758322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112072002307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054046527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112072002307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054046527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112072002307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054046527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1449902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057707647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/171079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058502369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.186.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060442772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.186.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060442772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.66.013603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060498429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.66.013603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060498429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.7352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.7352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.26.2181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060531141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.26.2181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060531141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.31.5782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060537443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.31.5782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060537443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.38.2398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060547200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.38.2398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060547200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.3647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060578167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.3647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060578167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.61.1410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060595316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.61.1410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060595316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.134520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060600936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.134520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060600936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.054522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060627353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.054522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060627353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.027301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060736365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.027301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060736365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.195302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.195302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.65.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060801309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.65.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060801309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.3896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060815263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.3896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060815263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.4831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.4831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060822823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060822823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.035301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060831581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.035301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060831581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.265302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060835100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.265302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060835100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/epl/i1998-00314-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064235178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-6978-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109716656", 
              "https://doi.org/10.1007/978-94-009-6978-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-6978-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109716656", 
              "https://doi.org/10.1007/978-94-009-6978-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-09", 
        "datePublishedReg": "2009-09-01", 
        "description": "We review the theory of relaxational kinetics of superfluid turbulence\u2014a tangle of quantized vortex lines\u2014in the limit of very low temperatures when the motion of vortices is conservative. While certain important aspects of the decay kinetics depend on whether the tangle is non-structured, like the one corresponding to the Kibble-Zurek picture, or essentially polarized, like the one that emulates the Richardson-Kolmogorov regime of classical turbulence, there are common fundamental features. In both cases, there exists an asymptotic range in the wavenumber space where the energy flux is supported by the cascade of Kelvin waves (kelvons)\u2014precessing distortions propagating along the vortex filaments. At large enough wavenumbers, the Kelvin-wave cascade is supported by three-kelvon elastic scattering. At zero temperature, the dissipative cutoff of the Kelvin-wave cascade is due to the emission of phonons, in which an elementary process converts two kelvons with almost opposite momenta into one bulk phonon. Along with the standard set of conservation laws, a crucial role in the theory of low-temperature vortex dynamics is played by the fact of integrability of the local induction approximation (LIA) controlled by the parameter \u039b=ln (\u03bb/a0), with \u03bb the characteristic kelvon wavelength and a0 the vortex core radius. While excluding a straightforward onset of the pure three-kelvon cascade, the integrability of LIA does not plug the cascade because of the natural availability of the kinetic channels associated with vortex line reconnections. We argue that the crossover from Richardson-Kolmogorov to the Kelvin-wave cascade is due to eventual dominance of local induction of a single line over the collective induction of polarized eddies, which causes the breakdown of classical-fluid regime and gives rise to a reconnection-driven inertial range.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10909-009-9914-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1030474", 
            "issn": [
              "0022-2291", 
              "1573-7357"
            ], 
            "name": "Journal of Low Temperature Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "156"
          }
        ], 
        "name": "Theory of Decay of Superfluid Turbulence in the Low-Temperature Limit", 
        "pagination": "215-267", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "82864a8e9a3cb8126eff6c796d608ab1e20ac6433adc67151d2ac72a969cbc66"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10909-009-9914-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027400038"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10909-009-9914-y", 
          "https://app.dimensions.ai/details/publication/pub.1027400038"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64119_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10909-009-9914-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-009-9914-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-009-9914-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-009-9914-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-009-9914-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      21 PREDICATES      83 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10909-009-9914-y schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nd5f6911959b4406a8432204db8333ea8
    4 schema:citation sg:pub.10.1007/978-94-009-6978-0
    5 sg:pub.10.1007/s10909-006-9240-6
    6 sg:pub.10.1007/s10909-008-9844-0
    7 sg:pub.10.1023/a:1019695418590
    8 sg:pub.10.1038/317505a0
    9 sg:pub.10.1038/nature07334
    10 https://doi.org/10.1016/0021-9991(88)90145-3
    11 https://doi.org/10.1016/j.physd.2008.01.010
    12 https://doi.org/10.1016/s0079-6417(08)60077-3
    13 https://doi.org/10.1016/s0921-4526(99)01442-8
    14 https://doi.org/10.1017/s0022112065000915
    15 https://doi.org/10.1017/s0022112072002307
    16 https://doi.org/10.1063/1.1449902
    17 https://doi.org/10.1086/171079
    18 https://doi.org/10.1088/0305-4470/9/8/029
    19 https://doi.org/10.1098/rspa.1956.0214
    20 https://doi.org/10.1098/rspa.1956.0215
    21 https://doi.org/10.1098/rspa.1957.0071
    22 https://doi.org/10.1098/rspa.1957.0191
    23 https://doi.org/10.1098/rspa.1958.0007
    24 https://doi.org/10.1103/physrev.186.128
    25 https://doi.org/10.1103/physreva.66.013603
    26 https://doi.org/10.1103/physreva.69.053617
    27 https://doi.org/10.1103/physrevb.25.7352
    28 https://doi.org/10.1103/physrevb.26.2181
    29 https://doi.org/10.1103/physrevb.31.5782
    30 https://doi.org/10.1103/physrevb.38.2398
    31 https://doi.org/10.1103/physrevb.52.3647
    32 https://doi.org/10.1103/physrevb.52.476
    33 https://doi.org/10.1103/physrevb.55.485
    34 https://doi.org/10.1103/physrevb.61.1410
    35 https://doi.org/10.1103/physrevb.62.11751
    36 https://doi.org/10.1103/physrevb.64.134520
    37 https://doi.org/10.1103/physrevb.72.172505
    38 https://doi.org/10.1103/physrevb.73.092501
    39 https://doi.org/10.1103/physrevb.75.064502
    40 https://doi.org/10.1103/physrevb.76.024520
    41 https://doi.org/10.1103/physrevb.77.060502
    42 https://doi.org/10.1103/physrevb.77.214509
    43 https://doi.org/10.1103/physrevb.79.054522
    44 https://doi.org/10.1103/physreve.76.027301
    45 https://doi.org/10.1103/physrevlett.100.195302
    46 https://doi.org/10.1103/physrevlett.100.245301
    47 https://doi.org/10.1103/physrevlett.101.215302
    48 https://doi.org/10.1103/physrevlett.65.187
    49 https://doi.org/10.1103/physrevlett.78.3896
    50 https://doi.org/10.1103/physrevlett.82.4831
    51 https://doi.org/10.1103/physrevlett.86.3080
    52 https://doi.org/10.1103/physrevlett.90.100403
    53 https://doi.org/10.1103/physrevlett.90.180401
    54 https://doi.org/10.1103/physrevlett.91.135301
    55 https://doi.org/10.1103/physrevlett.92.035301
    56 https://doi.org/10.1103/physrevlett.94.025301
    57 https://doi.org/10.1103/physrevlett.96.035301
    58 https://doi.org/10.1103/physrevlett.99.265302
    59 https://doi.org/10.1209/epl/i1998-00314-9
    60 schema:datePublished 2009-09
    61 schema:datePublishedReg 2009-09-01
    62 schema:description We review the theory of relaxational kinetics of superfluid turbulence—a tangle of quantized vortex lines—in the limit of very low temperatures when the motion of vortices is conservative. While certain important aspects of the decay kinetics depend on whether the tangle is non-structured, like the one corresponding to the Kibble-Zurek picture, or essentially polarized, like the one that emulates the Richardson-Kolmogorov regime of classical turbulence, there are common fundamental features. In both cases, there exists an asymptotic range in the wavenumber space where the energy flux is supported by the cascade of Kelvin waves (kelvons)—precessing distortions propagating along the vortex filaments. At large enough wavenumbers, the Kelvin-wave cascade is supported by three-kelvon elastic scattering. At zero temperature, the dissipative cutoff of the Kelvin-wave cascade is due to the emission of phonons, in which an elementary process converts two kelvons with almost opposite momenta into one bulk phonon. Along with the standard set of conservation laws, a crucial role in the theory of low-temperature vortex dynamics is played by the fact of integrability of the local induction approximation (LIA) controlled by the parameter Λ=ln (λ/a0), with λ the characteristic kelvon wavelength and a0 the vortex core radius. While excluding a straightforward onset of the pure three-kelvon cascade, the integrability of LIA does not plug the cascade because of the natural availability of the kinetic channels associated with vortex line reconnections. We argue that the crossover from Richardson-Kolmogorov to the Kelvin-wave cascade is due to eventual dominance of local induction of a single line over the collective induction of polarized eddies, which causes the breakdown of classical-fluid regime and gives rise to a reconnection-driven inertial range.
    63 schema:genre research_article
    64 schema:inLanguage en
    65 schema:isAccessibleForFree true
    66 schema:isPartOf N0195f323ab814cf7a80505621d3e7f35
    67 N453375f4a36d4b72a63c42d916f756ca
    68 sg:journal.1030474
    69 schema:name Theory of Decay of Superfluid Turbulence in the Low-Temperature Limit
    70 schema:pagination 215-267
    71 schema:productId N4b938ee81c07425882fd3101c2c5e4e1
    72 N6d95129dc238472286422385a8827f39
    73 N91f821e6ca1540fdbe2c1818887fe46f
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027400038
    75 https://doi.org/10.1007/s10909-009-9914-y
    76 schema:sdDatePublished 2019-04-11T09:27
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N40a51de6f58441d7bdb343defc50ef7d
    79 schema:url http://link.springer.com/10.1007%2Fs10909-009-9914-y
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N0195f323ab814cf7a80505621d3e7f35 schema:issueNumber 3-6
    84 rdf:type schema:PublicationIssue
    85 N1bbd600c70b146ab96163e6579b1e2e7 rdf:first sg:person.01265603346.95
    86 rdf:rest rdf:nil
    87 N40a51de6f58441d7bdb343defc50ef7d schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N453375f4a36d4b72a63c42d916f756ca schema:volumeNumber 156
    90 rdf:type schema:PublicationVolume
    91 N4b938ee81c07425882fd3101c2c5e4e1 schema:name dimensions_id
    92 schema:value pub.1027400038
    93 rdf:type schema:PropertyValue
    94 N6d95129dc238472286422385a8827f39 schema:name doi
    95 schema:value 10.1007/s10909-009-9914-y
    96 rdf:type schema:PropertyValue
    97 N91f821e6ca1540fdbe2c1818887fe46f schema:name readcube_id
    98 schema:value 82864a8e9a3cb8126eff6c796d608ab1e20ac6433adc67151d2ac72a969cbc66
    99 rdf:type schema:PropertyValue
    100 Nd5f6911959b4406a8432204db8333ea8 rdf:first sg:person.01217762103.06
    101 rdf:rest N1bbd600c70b146ab96163e6579b1e2e7
    102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Engineering
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Interdisciplinary Engineering
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1030474 schema:issn 0022-2291
    109 1573-7357
    110 schema:name Journal of Low Temperature Physics
    111 rdf:type schema:Periodical
    112 sg:person.01217762103.06 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    113 schema:familyName Kozik
    114 schema:givenName E. V.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217762103.06
    116 rdf:type schema:Person
    117 sg:person.01265603346.95 schema:affiliation https://www.grid.ac/institutes/grid.18919.38
    118 schema:familyName Svistunov
    119 schema:givenName B. V.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265603346.95
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-94-009-6978-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716656
    123 https://doi.org/10.1007/978-94-009-6978-0
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s10909-006-9240-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007937180
    126 https://doi.org/10.1007/s10909-006-9240-6
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10909-008-9844-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026705325
    129 https://doi.org/10.1007/s10909-008-9844-0
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1023/a:1019695418590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024505897
    132 https://doi.org/10.1023/a:1019695418590
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1038/317505a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010182171
    135 https://doi.org/10.1038/317505a0
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/nature07334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040794405
    138 https://doi.org/10.1038/nature07334
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/0021-9991(88)90145-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038978709
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.physd.2008.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013768880
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s0079-6417(08)60077-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045576254
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/s0921-4526(99)01442-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036262052
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1017/s0022112065000915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053758322
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1017/s0022112072002307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054046527
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1063/1.1449902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057707647
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1086/171079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058502369
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1088/0305-4470/9/8/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045952638
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1098/rspa.1956.0214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050526142
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1098/rspa.1956.0215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046342441
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1098/rspa.1957.0071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003511271
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1098/rspa.1957.0191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005524701
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1098/rspa.1958.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008467189
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrev.186.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060442772
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physreva.66.013603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060498429
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1103/physreva.69.053617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007335837
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1103/physrevb.25.7352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530900
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1103/physrevb.26.2181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531141
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1103/physrevb.31.5782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537443
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1103/physrevb.38.2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060547200
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1103/physrevb.52.3647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578167
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1103/physrevb.52.476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014223021
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1103/physrevb.55.485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014472270
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1103/physrevb.61.1410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060595316
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1103/physrevb.62.11751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006997173
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1103/physrevb.64.134520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060600936
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1103/physrevb.72.172505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037780733
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1103/physrevb.73.092501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021646333
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1103/physrevb.75.064502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029166785
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1103/physrevb.76.024520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019813445
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1103/physrevb.77.060502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042819327
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1103/physrevb.77.214509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029159328
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1103/physrevb.79.054522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627353
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1103/physreve.76.027301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736365
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1103/physrevlett.100.195302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753444
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1103/physrevlett.100.245301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010159346
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1103/physrevlett.101.215302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027032714
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1103/physrevlett.65.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801309
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1103/physrevlett.78.3896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815263
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1103/physrevlett.82.4831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819606
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1103/physrevlett.86.3080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822823
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1103/physrevlett.90.100403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020406564
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1103/physrevlett.90.180401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041683730
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1103/physrevlett.91.135301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015077750
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1103/physrevlett.92.035301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039401440
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1103/physrevlett.94.025301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051663161
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1103/physrevlett.96.035301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831581
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1103/physrevlett.99.265302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060835100
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1209/epl/i1998-00314-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064235178
    239 rdf:type schema:CreativeWork
    240 https://www.grid.ac/institutes/grid.18919.38 schema:alternateName Kurchatov Institute
    241 schema:name Department of Physics, University of Massachusetts, 01003, Amherst, MA, USA
    242 Russian Research Center “Kurchatov Institute”, 123182, Moscow, Russia
    243 rdf:type schema:Organization
    244 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
    245 schema:name Theoretische Physik, ETH Zürich, 8093, Zürich, Switzerland
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...