Single-Electron Transport Driven by Surface Acoustic Waves: Moving Quantum Dots Versus Short Barriers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-01-31

AUTHORS

P. Utko, J. Bindslev Hansen, P. E. Lindelof, C. B. Sørensen, K. Gloos

ABSTRACT

We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the gate voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously, though at different current values, as if they were superposed on each other. Their presence could result from two independent quantization mechanisms for the acoustoelectric-current. We point out that short potential barriers determining the properties of our nominally long constrictions could lead to an additional quantization mechanism, independent from those described in the standard model of ‘moving quantum dots.’ More... »

PAGES

607-627

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10909-006-9285-6

DOI

http://dx.doi.org/10.1007/s10909-006-9285-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038010259


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nano-Science Center and Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Nano-Science Center and Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Utko", 
        "givenName": "P.", 
        "id": "sg:person.01316456010.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316456010.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Technical University of Denmark, 2800, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Physics, Technical University of Denmark, 2800, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hansen", 
        "givenName": "J. Bindslev", 
        "id": "sg:person.011026041543.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011026041543.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nano-Science Center and Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Nano-Science Center and Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindelof", 
        "givenName": "P. E.", 
        "id": "sg:person.0760402255.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760402255.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nano-Science Center and Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Nano-Science Center and Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00f8rensen", 
        "givenName": "C. B.", 
        "id": "sg:person.016354064432.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354064432.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wihuri Physical Laboratory, Department of Physics, University of Turku, 20014, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.1374.1", 
          "name": [
            "Wihuri Physical Laboratory, Department of Physics, University of Turku, 20014, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gloos", 
        "givenName": "K.", 
        "id": "sg:person.07775651117.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775651117.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1004627025007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042207311", 
          "https://doi.org/10.1023/a:1004627025007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2004-00204-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062895504", 
          "https://doi.org/10.1140/epjb/e2004-00204-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050629505", 
          "https://doi.org/10.1038/35065553"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-01-31", 
    "datePublishedReg": "2007-01-31", 
    "description": "We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the gate voltage Vg of the point contact is varied. A pronounced 1.1\u00a0MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1\u00a0MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously, though at different current values, as if they were superposed on each other. Their presence could result from two independent quantization mechanisms for the acoustoelectric-current. We point out that short potential barriers determining the properties of our nominally long constrictions could lead to an additional quantization mechanism, independent from those described in the standard model of \u2018moving quantum dots.\u2019", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10909-006-9285-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "146"
      }
    ], 
    "keywords": [
      "surface acoustic waves", 
      "different current values", 
      "gate voltage characteristics", 
      "point contact", 
      "acoustic waves", 
      "quantization mechanism", 
      "gate voltage Vg", 
      "frequency f", 
      "current values", 
      "voltage Vg", 
      "quantum dots", 
      "independent beams", 
      "modulation period", 
      "waves", 
      "proper conditions", 
      "shortest barrier", 
      "integer multiples", 
      "quantized steps", 
      "beam", 
      "potential barrier", 
      "MHz", 
      "contact", 
      "dots", 
      "Driven", 
      "opposite direction", 
      "properties", 
      "longer constrictions", 
      "Vg", 
      "different sets", 
      "characteristics", 
      "regime", 
      "direction", 
      "conditions", 
      "quantum point contact", 
      "interference", 
      "model", 
      "mechanism", 
      "step", 
      "barriers", 
      "results", 
      "values", 
      "multiples", 
      "types", 
      "set", 
      "presence", 
      "cases", 
      "response", 
      "matter", 
      "period", 
      "constriction", 
      "EF", 
      "standard model"
    ], 
    "name": "Single-Electron Transport Driven by Surface Acoustic Waves: Moving Quantum Dots Versus Short Barriers", 
    "pagination": "607-627", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038010259"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10909-006-9285-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10909-006-9285-6", 
      "https://app.dimensions.ai/details/publication/pub.1038010259"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_449.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10909-006-9285-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10909-006-9285-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10909-006-9285-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10909-006-9285-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10909-006-9285-6'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      79 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10909-006-9285-6 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N4b1d3c4dbcc54534a28982ea6e89b368
4 schema:citation sg:pub.10.1023/a:1004627025007
5 sg:pub.10.1038/35065553
6 sg:pub.10.1140/epjb/e2004-00204-0
7 schema:datePublished 2007-01-31
8 schema:datePublishedReg 2007-01-31
9 schema:description We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the gate voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously, though at different current values, as if they were superposed on each other. Their presence could result from two independent quantization mechanisms for the acoustoelectric-current. We point out that short potential barriers determining the properties of our nominally long constrictions could lead to an additional quantization mechanism, independent from those described in the standard model of ‘moving quantum dots.’
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N5a7751f7154b46d3927e1d4eddbdbebd
13 Na5faa243c984489390f52af580c402f9
14 sg:journal.1030474
15 schema:keywords Driven
16 EF
17 MHz
18 Vg
19 acoustic waves
20 barriers
21 beam
22 cases
23 characteristics
24 conditions
25 constriction
26 contact
27 current values
28 different current values
29 different sets
30 direction
31 dots
32 frequency f
33 gate voltage Vg
34 gate voltage characteristics
35 independent beams
36 integer multiples
37 interference
38 longer constrictions
39 matter
40 mechanism
41 model
42 modulation period
43 multiples
44 opposite direction
45 period
46 point contact
47 potential barrier
48 presence
49 proper conditions
50 properties
51 quantization mechanism
52 quantized steps
53 quantum dots
54 quantum point contact
55 regime
56 response
57 results
58 set
59 shortest barrier
60 standard model
61 step
62 surface acoustic waves
63 types
64 values
65 voltage Vg
66 waves
67 schema:name Single-Electron Transport Driven by Surface Acoustic Waves: Moving Quantum Dots Versus Short Barriers
68 schema:pagination 607-627
69 schema:productId N09b3467e31ca42bb9a16727781e09246
70 N176ce532226646ff8a36ac46a02ac728
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038010259
72 https://doi.org/10.1007/s10909-006-9285-6
73 schema:sdDatePublished 2022-09-02T15:52
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Na7afa5e51db1445ba5d48bf8e1f4c262
76 schema:url https://doi.org/10.1007/s10909-006-9285-6
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0548f4b6d6624eb287ba439524d60598 rdf:first sg:person.011026041543.23
81 rdf:rest N838eeacdf498487fbc598fc7583fb845
82 N09b3467e31ca42bb9a16727781e09246 schema:name doi
83 schema:value 10.1007/s10909-006-9285-6
84 rdf:type schema:PropertyValue
85 N176ce532226646ff8a36ac46a02ac728 schema:name dimensions_id
86 schema:value pub.1038010259
87 rdf:type schema:PropertyValue
88 N1991d74b98774e44a5f92f80f0ea1e7f rdf:first sg:person.016354064432.32
89 rdf:rest N87ef1bffb2a7421099e2448d90632d7f
90 N4b1d3c4dbcc54534a28982ea6e89b368 rdf:first sg:person.01316456010.40
91 rdf:rest N0548f4b6d6624eb287ba439524d60598
92 N5a7751f7154b46d3927e1d4eddbdbebd schema:volumeNumber 146
93 rdf:type schema:PublicationVolume
94 N838eeacdf498487fbc598fc7583fb845 rdf:first sg:person.0760402255.50
95 rdf:rest N1991d74b98774e44a5f92f80f0ea1e7f
96 N87ef1bffb2a7421099e2448d90632d7f rdf:first sg:person.07775651117.41
97 rdf:rest rdf:nil
98 Na5faa243c984489390f52af580c402f9 schema:issueNumber 5-6
99 rdf:type schema:PublicationIssue
100 Na7afa5e51db1445ba5d48bf8e1f4c262 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
106 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
107 rdf:type schema:DefinedTerm
108 sg:journal.1030474 schema:issn 0022-2291
109 1573-7357
110 schema:name Journal of Low Temperature Physics
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.011026041543.23 schema:affiliation grid-institutes:grid.5170.3
114 schema:familyName Hansen
115 schema:givenName J. Bindslev
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011026041543.23
117 rdf:type schema:Person
118 sg:person.01316456010.40 schema:affiliation grid-institutes:grid.5254.6
119 schema:familyName Utko
120 schema:givenName P.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316456010.40
122 rdf:type schema:Person
123 sg:person.016354064432.32 schema:affiliation grid-institutes:grid.5254.6
124 schema:familyName Sørensen
125 schema:givenName C. B.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354064432.32
127 rdf:type schema:Person
128 sg:person.0760402255.50 schema:affiliation grid-institutes:grid.5254.6
129 schema:familyName Lindelof
130 schema:givenName P. E.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760402255.50
132 rdf:type schema:Person
133 sg:person.07775651117.41 schema:affiliation grid-institutes:grid.1374.1
134 schema:familyName Gloos
135 schema:givenName K.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775651117.41
137 rdf:type schema:Person
138 sg:pub.10.1023/a:1004627025007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042207311
139 https://doi.org/10.1023/a:1004627025007
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/35065553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050629505
142 https://doi.org/10.1038/35065553
143 rdf:type schema:CreativeWork
144 sg:pub.10.1140/epjb/e2004-00204-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062895504
145 https://doi.org/10.1140/epjb/e2004-00204-0
146 rdf:type schema:CreativeWork
147 grid-institutes:grid.1374.1 schema:alternateName Wihuri Physical Laboratory, Department of Physics, University of Turku, 20014, Turku, Finland
148 schema:name Wihuri Physical Laboratory, Department of Physics, University of Turku, 20014, Turku, Finland
149 rdf:type schema:Organization
150 grid-institutes:grid.5170.3 schema:alternateName Department of Physics, Technical University of Denmark, 2800, Lyngby, Denmark
151 schema:name Department of Physics, Technical University of Denmark, 2800, Lyngby, Denmark
152 rdf:type schema:Organization
153 grid-institutes:grid.5254.6 schema:alternateName Nano-Science Center and Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
154 schema:name Nano-Science Center and Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...