Enhanced Anti-ablation and Alkali Corrosion Resistance of Graphene Oxide Modified Urea-Melamine-Phenol Formaldehyde Composites Reinforced by R-Glass Fiber View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

Cao Wu, Zhaofeng Chen, Fei Wang

ABSTRACT

Graphene oxide (GO) modified urea-melamine-phenol formaldehyde resin (UMPF) was reinforced by R-glass fiber woven. GO was reduced by UMPF to reduced graphene oxide (RGO). Transmission electron microscopy (TEM), atomic force microscope (AFM), and scanning electron microscopy (SEM) were used to analyze the morphology and dispersibility of RGO in UMPF. Compared with the pure R-glass fiber woven reinforced urea-melamine-phenol formaldehyde resin (RFW-UMPF), the thermal conductivity and carbon residual value (CRV) of R-glass fiber woven reinforced GO modified urea-melamine-phenol formaldehyde resin (RFW-GO/UMPF) (0.8 wt% RGO) at 800 °C were increased by 6.3% and 20%, respectively. Anti-ablation researches revealed that with 0.8 wt% RGO loading, the linear ablation rate (LAR) and mass ablation rate (MAR) of RFW-GO/UMPF deceased by 25.6% and 12.6%, respectively. Moreover, the enhancement mechanism of RGO on anti-ablation properties and alkali corrosion resistance (ACR) performances were systematically discussed. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10904-019-01144-w

DOI

http://dx.doi.org/10.1007/s10904-019-01144-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113144095


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People\u2019s Republic of China", 
            "Suqian NUAA Institute of Advanced Materials and Equipment Manufacturing Co., Ltd., 223800, Suqian, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Cao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhaofeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Fei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00767897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000293293", 
          "https://doi.org/10.1007/bf00767897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00767897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000293293", 
          "https://doi.org/10.1007/bf00767897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00767897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000293293", 
          "https://doi.org/10.1007/bf00767897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0731872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002634830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0731872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002634830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2013.11.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003811088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200801776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003961152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200801776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003961152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(02)00098-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004342518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-015-9193-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005838051", 
          "https://doi.org/10.1007/s10853-015-9193-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/msce.2015.38009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007893962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/319840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016266254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2015.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021537148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10965-012-9831-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023985361", 
          "https://doi.org/10.1007/s10965-012-9831-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(02)00352-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024922204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(02)00352-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024922204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(01)00219-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025105400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2013.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027565976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2011.08.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028047530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymdegradstab.2009.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032167198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2012.11.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033377007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4628(19980808)69:6<1129::aid-app10>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034107447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pat.3121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040441495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-016-0124-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050596744", 
          "https://doi.org/10.1007/s10853-016-0124-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-016-0124-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050596744", 
          "https://doi.org/10.1007/s10853-016-0124-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2013.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051758869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-8368(96)00042-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051817134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4628(19961003)62:1<227::aid-app26>3.0.co;2-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053020591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2013.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053029274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am405983a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055145028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie50521a053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055633575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.125403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.125403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1528083716665628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064034670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1528083716665628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064034670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1528083718769926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103344803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1591/aaeaaf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107805232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1591/aaeaaf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107805232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2018.12.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110813589"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-30", 
    "datePublishedReg": "2019-03-30", 
    "description": "Graphene oxide (GO) modified urea-melamine-phenol formaldehyde resin (UMPF) was reinforced by R-glass fiber woven. GO was reduced by UMPF to reduced graphene oxide (RGO). Transmission electron microscopy (TEM), atomic force microscope (AFM), and scanning electron microscopy (SEM) were used to analyze the morphology and dispersibility of RGO in UMPF. Compared with the pure R-glass fiber woven reinforced urea-melamine-phenol formaldehyde resin (RFW-UMPF), the thermal conductivity and carbon residual value (CRV) of R-glass fiber woven reinforced GO modified urea-melamine-phenol formaldehyde resin (RFW-GO/UMPF) (0.8 wt% RGO) at 800 \u00b0C were increased by 6.3% and 20%, respectively. Anti-ablation researches revealed that with 0.8 wt% RGO loading, the linear ablation rate (LAR) and mass ablation rate (MAR) of RFW-GO/UMPF deceased by 25.6% and 12.6%, respectively. Moreover, the enhancement mechanism of RGO on anti-ablation properties and alkali corrosion resistance (ACR) performances were systematically discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10904-019-01144-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047541", 
        "issn": [
          "1574-1443", 
          "1574-1451"
        ], 
        "name": "Journal of Inorganic and Organometallic Polymers and Materials", 
        "type": "Periodical"
      }
    ], 
    "name": "Enhanced Anti-ablation and Alkali Corrosion Resistance of Graphene Oxide Modified Urea-Melamine-Phenol Formaldehyde Composites Reinforced by R-Glass Fiber", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0833b8a8b51496306ee0b66e4d67eff0811f8622ea86a22bd7395ba45b91e864"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10904-019-01144-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113144095"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10904-019-01144-w", 
      "https://app.dimensions.ai/details/publication/pub.1113144095"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46769_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10904-019-01144-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10904-019-01144-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10904-019-01144-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10904-019-01144-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10904-019-01144-w'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10904-019-01144-w schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne995a7a921a64c2b98248b60b34466ef
4 schema:citation sg:pub.10.1007/bf00767897
5 sg:pub.10.1007/s10853-015-9193-8
6 sg:pub.10.1007/s10853-016-0124-0
7 sg:pub.10.1007/s10965-012-9831-7
8 https://doi.org/10.1002/(sici)1097-4628(19961003)62:1<227::aid-app26>3.0.co;2-0
9 https://doi.org/10.1002/(sici)1097-4628(19980808)69:6<1129::aid-app10>3.0.co;2-o
10 https://doi.org/10.1002/adfm.200801776
11 https://doi.org/10.1002/pat.3121
12 https://doi.org/10.1016/j.carbon.2012.11.042
13 https://doi.org/10.1016/j.carbon.2013.11.046
14 https://doi.org/10.1016/j.compositesb.2013.12.011
15 https://doi.org/10.1016/j.compositesb.2015.01.011
16 https://doi.org/10.1016/j.compositesb.2018.12.079
17 https://doi.org/10.1016/j.compscitech.2013.03.005
18 https://doi.org/10.1016/j.compscitech.2013.10.012
19 https://doi.org/10.1016/j.matlet.2011.08.063
20 https://doi.org/10.1016/j.polymdegradstab.2009.07.022
21 https://doi.org/10.1016/s0008-6223(02)00352-4
22 https://doi.org/10.1016/s0266-3538(01)00219-6
23 https://doi.org/10.1016/s0266-3538(02)00098-2
24 https://doi.org/10.1016/s1359-8368(96)00042-x
25 https://doi.org/10.1021/am405983a
26 https://doi.org/10.1021/ie50521a053
27 https://doi.org/10.1021/nl0731872
28 https://doi.org/10.1088/2053-1591/aaeaaf
29 https://doi.org/10.1103/physrevb.74.125403
30 https://doi.org/10.1155/2013/319840
31 https://doi.org/10.1177/1528083716665628
32 https://doi.org/10.1177/1528083718769926
33 https://doi.org/10.4236/msce.2015.38009
34 schema:datePublished 2019-03-30
35 schema:datePublishedReg 2019-03-30
36 schema:description Graphene oxide (GO) modified urea-melamine-phenol formaldehyde resin (UMPF) was reinforced by R-glass fiber woven. GO was reduced by UMPF to reduced graphene oxide (RGO). Transmission electron microscopy (TEM), atomic force microscope (AFM), and scanning electron microscopy (SEM) were used to analyze the morphology and dispersibility of RGO in UMPF. Compared with the pure R-glass fiber woven reinforced urea-melamine-phenol formaldehyde resin (RFW-UMPF), the thermal conductivity and carbon residual value (CRV) of R-glass fiber woven reinforced GO modified urea-melamine-phenol formaldehyde resin (RFW-GO/UMPF) (0.8 wt% RGO) at 800 °C were increased by 6.3% and 20%, respectively. Anti-ablation researches revealed that with 0.8 wt% RGO loading, the linear ablation rate (LAR) and mass ablation rate (MAR) of RFW-GO/UMPF deceased by 25.6% and 12.6%, respectively. Moreover, the enhancement mechanism of RGO on anti-ablation properties and alkali corrosion resistance (ACR) performances were systematically discussed.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1047541
41 schema:name Enhanced Anti-ablation and Alkali Corrosion Resistance of Graphene Oxide Modified Urea-Melamine-Phenol Formaldehyde Composites Reinforced by R-Glass Fiber
42 schema:pagination 1-9
43 schema:productId N4862c88337d541a4ad38bbbea24e24ea
44 Na98a72650ade44a3a8728abc551078ef
45 Nfd8c4be112474c39ab95264803ee65cd
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113144095
47 https://doi.org/10.1007/s10904-019-01144-w
48 schema:sdDatePublished 2019-04-11T13:34
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N8bc9689b986b40d0a45eaf3548f55701
51 schema:url https://link.springer.com/10.1007%2Fs10904-019-01144-w
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0cd8d7eba2b24a7bb0cae07cd69ed53e schema:affiliation https://www.grid.ac/institutes/grid.64938.30
56 schema:familyName Wang
57 schema:givenName Fei
58 rdf:type schema:Person
59 N4862c88337d541a4ad38bbbea24e24ea schema:name dimensions_id
60 schema:value pub.1113144095
61 rdf:type schema:PropertyValue
62 N8bc9689b986b40d0a45eaf3548f55701 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N978d994a0e7f4c4bbfc2b8ebad7d0a3f schema:affiliation https://www.grid.ac/institutes/grid.64938.30
65 schema:familyName Chen
66 schema:givenName Zhaofeng
67 rdf:type schema:Person
68 N9b828203204a414d8b85364a2cd1ccf8 rdf:first N0cd8d7eba2b24a7bb0cae07cd69ed53e
69 rdf:rest rdf:nil
70 Na98a72650ade44a3a8728abc551078ef schema:name doi
71 schema:value 10.1007/s10904-019-01144-w
72 rdf:type schema:PropertyValue
73 Ne995a7a921a64c2b98248b60b34466ef rdf:first Nf1c0ee977b9c45efa5bc84feef3c6e49
74 rdf:rest Nf446a1a7f10149bd99f5c1c6f4c2b87a
75 Nf1c0ee977b9c45efa5bc84feef3c6e49 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
76 schema:familyName Wu
77 schema:givenName Cao
78 rdf:type schema:Person
79 Nf446a1a7f10149bd99f5c1c6f4c2b87a rdf:first N978d994a0e7f4c4bbfc2b8ebad7d0a3f
80 rdf:rest N9b828203204a414d8b85364a2cd1ccf8
81 Nfd8c4be112474c39ab95264803ee65cd schema:name readcube_id
82 schema:value 0833b8a8b51496306ee0b66e4d67eff0811f8622ea86a22bd7395ba45b91e864
83 rdf:type schema:PropertyValue
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
88 schema:name Materials Engineering
89 rdf:type schema:DefinedTerm
90 sg:journal.1047541 schema:issn 1574-1443
91 1574-1451
92 schema:name Journal of Inorganic and Organometallic Polymers and Materials
93 rdf:type schema:Periodical
94 sg:pub.10.1007/bf00767897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000293293
95 https://doi.org/10.1007/bf00767897
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10853-015-9193-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005838051
98 https://doi.org/10.1007/s10853-015-9193-8
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10853-016-0124-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050596744
101 https://doi.org/10.1007/s10853-016-0124-0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10965-012-9831-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023985361
104 https://doi.org/10.1007/s10965-012-9831-7
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/(sici)1097-4628(19961003)62:1<227::aid-app26>3.0.co;2-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053020591
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/(sici)1097-4628(19980808)69:6<1129::aid-app10>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1034107447
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/adfm.200801776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003961152
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/pat.3121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040441495
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.carbon.2012.11.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033377007
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.carbon.2013.11.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003811088
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.compositesb.2013.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053029274
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.compositesb.2015.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021537148
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.compositesb.2018.12.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110813589
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.compscitech.2013.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027565976
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.compscitech.2013.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051758869
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.matlet.2011.08.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028047530
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.polymdegradstab.2009.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032167198
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0008-6223(02)00352-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024922204
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0266-3538(01)00219-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025105400
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0266-3538(02)00098-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004342518
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1359-8368(96)00042-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051817134
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1021/am405983a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055145028
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1021/ie50521a053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055633575
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1021/nl0731872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002634830
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/2053-1591/aaeaaf schema:sameAs https://app.dimensions.ai/details/publication/pub.1107805232
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.74.125403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060618788
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1155/2013/319840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016266254
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1177/1528083716665628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064034670
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1177/1528083718769926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103344803
155 rdf:type schema:CreativeWork
156 https://doi.org/10.4236/msce.2015.38009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007893962
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
159 schema:name International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People’s Republic of China
160 Suqian NUAA Institute of Advanced Materials and Equipment Manufacturing Co., Ltd., 223800, Suqian, People’s Republic of China
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...