Modified Sol–Gel Based Nanostructured Zirconia Thin Film: Preparation, Characterization, Photocatalyst and Corrosion Behavior View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

Ali Majedi, Fatemeh Davar, Alireza Abbasi, Ali Ashrafi

ABSTRACT

In this work, AISI 316L stainless steel was coated by nanostructured zirconia using the sucrose assisted sol–gel dip-coating route. Then, the effect of different calcination temperatures and the thickness of the coating on the corrosion protection of 316L stainless steel was investigated. Here, Zr(acac)4 and sucrose were used as starting materials and gelation agents, respectively. Thermogravimetry and differential thermal analysis, X-ray powder diffraction (XRD), Fourier transform infrared, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to characterize the coatings. XRD revealed that the pure tetragonal phase of zirconia was obtained at the calcination temperature of 300–500 °C. However, the mixture of monoclinic (m) and tetragonal (t) phase found in the zirconia coating calcined at 650 °C. Also, by increasing the calcination temperature from 300 to 650 °C, the mean of the crystallite size of structures was increased from 7 to 27 nm. AFM result show that the average roughness value of the sample calcined at 300 °C is 10.5 nm and the dimensions of the particles on the surface of this sample smaller than 50 nm. The potentiodynamic polarization and electrochemical impedance spectroscopy results revealed that the as-synthesized nanostructured sol–gel zirconia coatings exhibited a barrier property for the protection of the substrate. However, the highest corrosion resistance was obtained by the zirconia coating calcined at 300 °C. This was as a result of the desirable compromise of good adhesion, low defect density, and high barrier behaviour. Furthermore, zirconia nanoparticles were synthesized by calcination of the gel at the different temperature. The photocatalytic activity of samples was tested for degradation of methyl orange solutions. It is found that ZrO2 nanoparticles calcined at 500 °C have higher photocatalytic activity than the other samples under UV light. More... »

PAGES

932-942

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10904-016-0394-7

DOI

http://dx.doi.org/10.1007/s10904-016-0394-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002421320


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tehran", 
          "id": "https://www.grid.ac/institutes/grid.46072.37", 
          "name": [
            "School of Chemistry, College of Science, University of Tehran, Tehran, Islamic Republic of Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Majedi", 
        "givenName": "Ali", 
        "id": "sg:person.012762515755.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762515755.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Isfahan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411751.7", 
          "name": [
            "Department of Chemistry, Isfahan University of Technology, 84156-83111, Isfahan, Islamic Republic of Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davar", 
        "givenName": "Fatemeh", 
        "id": "sg:person.014166612315.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166612315.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tehran", 
          "id": "https://www.grid.ac/institutes/grid.46072.37", 
          "name": [
            "School of Chemistry, College of Science, University of Tehran, Tehran, Islamic Republic of Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbasi", 
        "givenName": "Alireza", 
        "id": "sg:person.01176544237.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176544237.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Isfahan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411751.7", 
          "name": [
            "Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Islamic Republic of Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashrafi", 
        "givenName": "Ali", 
        "id": "sg:person.014603103720.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603103720.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jallcom.2011.07.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000456156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10971-014-3521-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000565588", 
          "https://doi.org/10.1007/s10971-014-3521-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2014.04.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001511961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2012.09.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002991025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10971-015-3881-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004661081", 
          "https://doi.org/10.1007/s10971-015-3881-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2011.11.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006597193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnoncrysol.2010.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007252125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1ce06155k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008398181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(96)02934-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009109827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10876-015-0942-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009346267", 
          "https://doi.org/10.1007/s10876-015-0942-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10971-015-3639-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011277510", 
          "https://doi.org/10.1007/s10971-015-3639-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2010.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015910679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13204-014-0340-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018215302", 
          "https://doi.org/10.1007/s13204-014-0340-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2012.09.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024189473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra11642a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024426595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssi.2004.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029965365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.porgcoat.2010.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032666999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ce40288f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032834977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a708208h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033872411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2008.08.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035375693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2003.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036928655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10971-014-3266-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037047350", 
          "https://doi.org/10.1007/s10971-014-3266-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1999.tb01949.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038164850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2005.05.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041770876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(00)00624-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042549209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2014.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042954481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2012.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047694940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jiec.2014.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050957242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm302177s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055415051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034129t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034129t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218625x06008670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062980148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/jnanor.21.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072056428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pes.2005.1489187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094464991"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "In this work, AISI 316L stainless steel was coated by nanostructured zirconia using the sucrose assisted sol\u2013gel dip-coating route. Then, the effect of different calcination temperatures and the thickness of the coating on the corrosion protection of 316L stainless steel was investigated. Here, Zr(acac)4 and sucrose were used as starting materials and gelation agents, respectively. Thermogravimetry and differential thermal analysis, X-ray powder diffraction (XRD), Fourier transform infrared, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to characterize the coatings. XRD revealed that the pure tetragonal phase of zirconia was obtained at the calcination temperature of 300\u2013500 \u00b0C. However, the mixture of monoclinic (m) and tetragonal (t) phase found in the zirconia coating calcined at 650 \u00b0C. Also, by increasing the calcination temperature from 300 to 650 \u00b0C, the mean of the crystallite size of structures was increased from 7 to 27 nm. AFM result show that the average roughness value of the sample calcined at 300 \u00b0C is 10.5 nm and the dimensions of the particles on the surface of this sample smaller than 50 nm. The potentiodynamic polarization and electrochemical impedance spectroscopy results revealed that the as-synthesized nanostructured sol\u2013gel zirconia coatings exhibited a barrier property for the protection of the substrate. However, the highest corrosion resistance was obtained by the zirconia coating calcined at 300 \u00b0C. This was as a result of the desirable compromise of good adhesion, low defect density, and high barrier behaviour. Furthermore, zirconia nanoparticles were synthesized by calcination of the gel at the different temperature. The photocatalytic activity of samples was tested for degradation of methyl orange solutions. It is found that ZrO2 nanoparticles calcined at 500 \u00b0C have higher photocatalytic activity than the other samples under UV light.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10904-016-0394-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047541", 
        "issn": [
          "1574-1443", 
          "1574-1451"
        ], 
        "name": "Journal of Inorganic and Organometallic Polymers and Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Modified Sol\u2013Gel Based Nanostructured Zirconia Thin Film: Preparation, Characterization, Photocatalyst and Corrosion Behavior", 
    "pagination": "932-942", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0b8722c61d158f4e714012ca539dd53fc243e463af78ba4f9203a8f7864b3cab"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10904-016-0394-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002421320"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10904-016-0394-7", 
      "https://app.dimensions.ai/details/publication/pub.1002421320"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87100_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10904-016-0394-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10904-016-0394-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10904-016-0394-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10904-016-0394-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10904-016-0394-7'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10904-016-0394-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7085919146a547dc8f98c030145b4f58
4 schema:citation sg:pub.10.1007/s10876-015-0942-2
5 sg:pub.10.1007/s10971-014-3266-z
6 sg:pub.10.1007/s10971-014-3521-3
7 sg:pub.10.1007/s10971-015-3639-y
8 sg:pub.10.1007/s10971-015-3881-3
9 sg:pub.10.1007/s13204-014-0340-3
10 https://doi.org/10.1016/j.corsci.2005.05.046
11 https://doi.org/10.1016/j.corsci.2010.06.009
12 https://doi.org/10.1016/j.corsci.2012.06.026
13 https://doi.org/10.1016/j.corsci.2014.04.044
14 https://doi.org/10.1016/j.electacta.2012.09.061
15 https://doi.org/10.1016/j.jallcom.2008.08.086
16 https://doi.org/10.1016/j.jallcom.2011.07.062
17 https://doi.org/10.1016/j.jhazmat.2011.11.050
18 https://doi.org/10.1016/j.jiec.2014.01.023
19 https://doi.org/10.1016/j.jnoncrysol.2010.10.025
20 https://doi.org/10.1016/j.porgcoat.2010.12.011
21 https://doi.org/10.1016/j.powtec.2014.03.024
22 https://doi.org/10.1016/j.ssi.2004.10.004
23 https://doi.org/10.1016/j.tsf.2003.07.009
24 https://doi.org/10.1016/j.watres.2012.09.058
25 https://doi.org/10.1016/s0167-2738(00)00624-x
26 https://doi.org/10.1016/s0257-8972(96)02934-9
27 https://doi.org/10.1021/cm302177s
28 https://doi.org/10.1021/nl034129t
29 https://doi.org/10.1039/a708208h
30 https://doi.org/10.1039/c1ce06155k
31 https://doi.org/10.1039/c3ce40288f
32 https://doi.org/10.1039/c4ra11642a
33 https://doi.org/10.1109/pes.2005.1489187
34 https://doi.org/10.1111/j.1151-2916.1999.tb01949.x
35 https://doi.org/10.1142/s0218625x06008670
36 https://doi.org/10.4028/www.scientific.net/jnanor.21.65
37 schema:datePublished 2016-09
38 schema:datePublishedReg 2016-09-01
39 schema:description In this work, AISI 316L stainless steel was coated by nanostructured zirconia using the sucrose assisted sol–gel dip-coating route. Then, the effect of different calcination temperatures and the thickness of the coating on the corrosion protection of 316L stainless steel was investigated. Here, Zr(acac)4 and sucrose were used as starting materials and gelation agents, respectively. Thermogravimetry and differential thermal analysis, X-ray powder diffraction (XRD), Fourier transform infrared, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to characterize the coatings. XRD revealed that the pure tetragonal phase of zirconia was obtained at the calcination temperature of 300–500 °C. However, the mixture of monoclinic (m) and tetragonal (t) phase found in the zirconia coating calcined at 650 °C. Also, by increasing the calcination temperature from 300 to 650 °C, the mean of the crystallite size of structures was increased from 7 to 27 nm. AFM result show that the average roughness value of the sample calcined at 300 °C is 10.5 nm and the dimensions of the particles on the surface of this sample smaller than 50 nm. The potentiodynamic polarization and electrochemical impedance spectroscopy results revealed that the as-synthesized nanostructured sol–gel zirconia coatings exhibited a barrier property for the protection of the substrate. However, the highest corrosion resistance was obtained by the zirconia coating calcined at 300 °C. This was as a result of the desirable compromise of good adhesion, low defect density, and high barrier behaviour. Furthermore, zirconia nanoparticles were synthesized by calcination of the gel at the different temperature. The photocatalytic activity of samples was tested for degradation of methyl orange solutions. It is found that ZrO2 nanoparticles calcined at 500 °C have higher photocatalytic activity than the other samples under UV light.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N2d33db7be37245a5941f78edfd826bcc
44 N6f8623c902a44958a9f6733f03d47fe2
45 sg:journal.1047541
46 schema:name Modified Sol–Gel Based Nanostructured Zirconia Thin Film: Preparation, Characterization, Photocatalyst and Corrosion Behavior
47 schema:pagination 932-942
48 schema:productId N4c9493d0839b4574ab3e95aa12e7dcc8
49 N76c7cd83ea1b4286a20c1fdf0634f309
50 N9a82613acbac4bf2b78b8a2021735406
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002421320
52 https://doi.org/10.1007/s10904-016-0394-7
53 schema:sdDatePublished 2019-04-11T12:24
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb54d4773594f42f4b79a90dce63f56d1
56 schema:url https://link.springer.com/10.1007%2Fs10904-016-0394-7
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N2d33db7be37245a5941f78edfd826bcc schema:issueNumber 5
61 rdf:type schema:PublicationIssue
62 N4c9493d0839b4574ab3e95aa12e7dcc8 schema:name readcube_id
63 schema:value 0b8722c61d158f4e714012ca539dd53fc243e463af78ba4f9203a8f7864b3cab
64 rdf:type schema:PropertyValue
65 N6f8623c902a44958a9f6733f03d47fe2 schema:volumeNumber 26
66 rdf:type schema:PublicationVolume
67 N7085919146a547dc8f98c030145b4f58 rdf:first sg:person.012762515755.71
68 rdf:rest Na5edd2e4ed504c75a0d45f9d3daa658e
69 N76c7cd83ea1b4286a20c1fdf0634f309 schema:name dimensions_id
70 schema:value pub.1002421320
71 rdf:type schema:PropertyValue
72 N832a1b6b76464f6488ace9758c91528a rdf:first sg:person.01176544237.41
73 rdf:rest N9156ae4b4d9342c1896914ef06b83a82
74 N9156ae4b4d9342c1896914ef06b83a82 rdf:first sg:person.014603103720.35
75 rdf:rest rdf:nil
76 N9a82613acbac4bf2b78b8a2021735406 schema:name doi
77 schema:value 10.1007/s10904-016-0394-7
78 rdf:type schema:PropertyValue
79 Na5edd2e4ed504c75a0d45f9d3daa658e rdf:first sg:person.014166612315.41
80 rdf:rest N832a1b6b76464f6488ace9758c91528a
81 Nb54d4773594f42f4b79a90dce63f56d1 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
87 schema:name Materials Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1047541 schema:issn 1574-1443
90 1574-1451
91 schema:name Journal of Inorganic and Organometallic Polymers and Materials
92 rdf:type schema:Periodical
93 sg:person.01176544237.41 schema:affiliation https://www.grid.ac/institutes/grid.46072.37
94 schema:familyName Abbasi
95 schema:givenName Alireza
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176544237.41
97 rdf:type schema:Person
98 sg:person.012762515755.71 schema:affiliation https://www.grid.ac/institutes/grid.46072.37
99 schema:familyName Majedi
100 schema:givenName Ali
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762515755.71
102 rdf:type schema:Person
103 sg:person.014166612315.41 schema:affiliation https://www.grid.ac/institutes/grid.411751.7
104 schema:familyName Davar
105 schema:givenName Fatemeh
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166612315.41
107 rdf:type schema:Person
108 sg:person.014603103720.35 schema:affiliation https://www.grid.ac/institutes/grid.411751.7
109 schema:familyName Ashrafi
110 schema:givenName Ali
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603103720.35
112 rdf:type schema:Person
113 sg:pub.10.1007/s10876-015-0942-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009346267
114 https://doi.org/10.1007/s10876-015-0942-2
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10971-014-3266-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037047350
117 https://doi.org/10.1007/s10971-014-3266-z
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10971-014-3521-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000565588
120 https://doi.org/10.1007/s10971-014-3521-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10971-015-3639-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011277510
123 https://doi.org/10.1007/s10971-015-3639-y
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10971-015-3881-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004661081
126 https://doi.org/10.1007/s10971-015-3881-3
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s13204-014-0340-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018215302
129 https://doi.org/10.1007/s13204-014-0340-3
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.corsci.2005.05.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041770876
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.corsci.2010.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015910679
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.corsci.2012.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047694940
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.corsci.2014.04.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001511961
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.electacta.2012.09.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024189473
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jallcom.2008.08.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035375693
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jallcom.2011.07.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000456156
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jhazmat.2011.11.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006597193
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jiec.2014.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050957242
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jnoncrysol.2010.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007252125
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.porgcoat.2010.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032666999
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.powtec.2014.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042954481
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ssi.2004.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029965365
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.tsf.2003.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036928655
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.watres.2012.09.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002991025
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0167-2738(00)00624-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042549209
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0257-8972(96)02934-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009109827
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/cm302177s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055415051
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/nl034129t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215536
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1039/a708208h schema:sameAs https://app.dimensions.ai/details/publication/pub.1033872411
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1039/c1ce06155k schema:sameAs https://app.dimensions.ai/details/publication/pub.1008398181
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1039/c3ce40288f schema:sameAs https://app.dimensions.ai/details/publication/pub.1032834977
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1039/c4ra11642a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024426595
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/pes.2005.1489187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094464991
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/j.1151-2916.1999.tb01949.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038164850
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1142/s0218625x06008670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062980148
182 rdf:type schema:CreativeWork
183 https://doi.org/10.4028/www.scientific.net/jnanor.21.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072056428
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.411751.7 schema:alternateName Isfahan University of Technology
186 schema:name Department of Chemistry, Isfahan University of Technology, 84156-83111, Isfahan, Islamic Republic of Iran
187 Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Islamic Republic of Iran
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.46072.37 schema:alternateName University of Tehran
190 schema:name School of Chemistry, College of Science, University of Tehran, Tehran, Islamic Republic of Iran
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...