Dual Characterizations of Set Containments with Strict Convex Inequalities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-01

AUTHORS

M. A. Goberna, V. Jeyakumar, N. Dinh

ABSTRACT

Characterizations of the containment of a convex set either in an arbitrary convex set or in the complement of a finite union of convex sets (i.e., the set, described by reverse-convex inequalities) are given. These characterizations provide ways of verifying the containments either by comparing their corresponding dual cones or by checking the consistency of suitable associated systems. The convex sets considered in this paper are the solution sets of an arbitrary number of convex inequalities, which can be either weak or strict inequalities. Particular cases of dual characterizations of set containments have played key roles in solving large scale knowledge-based data classification problems where they are used to describe the containments as inequality constraints in optimization problems. The idea of evenly convex set (intersection of open half spaces), which was introduced by W. Fenchel in 1952, is used to derive the dual conditions, characterizing the set containments. More... »

PAGES

33-54

References to SciGraph publications

  • 2001. Farkas Lemma: Generalizations in ENCYCLOPEDIA OF OPTIMIZATION
  • 1997-06. Mathematical Programming in Data Mining in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2003-06. On the Stability of the Boundary of the Feasible Set in Linear Optimization in SET-VALUED ANALYSIS
  • 1993. Convex Analysis and Minimization Algorithms I, Fundamentals in NONE
  • 2002-12. Set Containment Characterization in JOURNAL OF GLOBAL OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10898-005-3885-6

    DOI

    http://dx.doi.org/10.1007/s10898-005-3885-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046450154


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Alicante", 
              "id": "https://www.grid.ac/institutes/grid.5268.9", 
              "name": [
                "Department of Statistics and Operations Research, University of Alicante, 03080, Alicante, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goberna", 
            "givenName": "M. A.", 
            "id": "sg:person.010313152515.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010313152515.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "UNSW Australia", 
              "id": "https://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "Department of Applied Mathematics, University of New South Wales, Sydney, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeyakumar", 
            "givenName": "V.", 
            "id": "sg:person.0721507112.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721507112.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "City University", 
              "id": "https://www.grid.ac/institutes/grid.442987.4", 
              "name": [
                "Department of Mathematics-Informatics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, Distr. 5, HCM city, Vietman"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dinh", 
            "givenName": "N.", 
            "id": "sg:person.012053525153.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053525153.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/10556780500137066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006412588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-306-48332-7_133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013776897", 
              "https://doi.org/10.1007/0-306-48332-7_133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1026756433", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02796-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026756433", 
              "https://doi.org/10.1007/978-3-662-02796-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02796-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026756433", 
              "https://doi.org/10.1007/978-3-662-02796-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009735908398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030469310", 
              "https://doi.org/10.1023/a:1009735908398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2003.12.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040293026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2003.12.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040293026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022950908783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040562832", 
              "https://doi.org/10.1023/a:1022950908783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021207718605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049805226", 
              "https://doi.org/10.1023/a:1021207718605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s1052623402401944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062883305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611971255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098553023"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-01", 
        "datePublishedReg": "2006-01-01", 
        "description": "Characterizations of the containment of a convex set either in an arbitrary convex set or in the complement of a finite union of convex sets (i.e., the set, described by reverse-convex inequalities) are given. These characterizations provide ways of verifying the containments either by comparing their corresponding dual cones or by checking the consistency of suitable associated systems. The convex sets considered in this paper are the solution sets of an arbitrary number of convex inequalities, which can be either weak or strict inequalities. Particular cases of dual characterizations of set containments have played key roles in solving large scale knowledge-based data classification problems where they are used to describe the containments as inequality constraints in optimization problems. The idea of evenly convex set (intersection of open half spaces), which was introduced by W. Fenchel in 1952, is used to derive the dual conditions, characterizing the set containments.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10898-005-3885-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1050312", 
            "issn": [
              "0925-5001", 
              "1573-2916"
            ], 
            "name": "Journal of Global Optimization", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "name": "Dual Characterizations of Set Containments with Strict Convex Inequalities", 
        "pagination": "33-54", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046450154"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10898-005-3885-6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dd44f58ed681d903a6cae9c8cf3f11bb345afc2eb37308a0492ec32a84f3a626"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10898-005-3885-6", 
          "https://app.dimensions.ai/details/publication/pub.1046450154"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-16T06:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106816_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10898-005-3885-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10898-005-3885-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10898-005-3885-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10898-005-3885-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10898-005-3885-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10898-005-3885-6 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N9142b2394b834253b3d88075a598c1ae
    4 schema:citation sg:pub.10.1007/0-306-48332-7_133
    5 sg:pub.10.1007/978-3-662-02796-7
    6 sg:pub.10.1023/a:1009735908398
    7 sg:pub.10.1023/a:1021207718605
    8 sg:pub.10.1023/a:1022950908783
    9 https://app.dimensions.ai/details/publication/pub.1026756433
    10 https://doi.org/10.1016/j.ejor.2003.12.028
    11 https://doi.org/10.1080/10556780500137066
    12 https://doi.org/10.1137/1.9781611971255
    13 https://doi.org/10.1137/s1052623402401944
    14 schema:datePublished 2006-01
    15 schema:datePublishedReg 2006-01-01
    16 schema:description Characterizations of the containment of a convex set either in an arbitrary convex set or in the complement of a finite union of convex sets (i.e., the set, described by reverse-convex inequalities) are given. These characterizations provide ways of verifying the containments either by comparing their corresponding dual cones or by checking the consistency of suitable associated systems. The convex sets considered in this paper are the solution sets of an arbitrary number of convex inequalities, which can be either weak or strict inequalities. Particular cases of dual characterizations of set containments have played key roles in solving large scale knowledge-based data classification problems where they are used to describe the containments as inequality constraints in optimization problems. The idea of evenly convex set (intersection of open half spaces), which was introduced by W. Fenchel in 1952, is used to derive the dual conditions, characterizing the set containments.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N112b056dcf0d48308ce74a88d151d96c
    21 Ndb1ec3a88b47443dbe67c29a5cd97003
    22 sg:journal.1050312
    23 schema:name Dual Characterizations of Set Containments with Strict Convex Inequalities
    24 schema:pagination 33-54
    25 schema:productId N3bf4454b825a469b8e57f484ab08115b
    26 N6fb81df1bbf54e1aafee7108439769c6
    27 N9ca6446f34e940899f4ecf34c3734487
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046450154
    29 https://doi.org/10.1007/s10898-005-3885-6
    30 schema:sdDatePublished 2019-04-16T06:22
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher Naeba46333fe14920b34e6cacf4fa128c
    33 schema:url http://link.springer.com/10.1007%2Fs10898-005-3885-6
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N0de0bd991aa045c4aaec8215f12f538a rdf:first sg:person.012053525153.02
    38 rdf:rest rdf:nil
    39 N112b056dcf0d48308ce74a88d151d96c schema:volumeNumber 34
    40 rdf:type schema:PublicationVolume
    41 N3bf4454b825a469b8e57f484ab08115b schema:name doi
    42 schema:value 10.1007/s10898-005-3885-6
    43 rdf:type schema:PropertyValue
    44 N4ef61c975e974692be2fb4e2066f2540 rdf:first sg:person.0721507112.52
    45 rdf:rest N0de0bd991aa045c4aaec8215f12f538a
    46 N6fb81df1bbf54e1aafee7108439769c6 schema:name readcube_id
    47 schema:value dd44f58ed681d903a6cae9c8cf3f11bb345afc2eb37308a0492ec32a84f3a626
    48 rdf:type schema:PropertyValue
    49 N9142b2394b834253b3d88075a598c1ae rdf:first sg:person.010313152515.51
    50 rdf:rest N4ef61c975e974692be2fb4e2066f2540
    51 N9ca6446f34e940899f4ecf34c3734487 schema:name dimensions_id
    52 schema:value pub.1046450154
    53 rdf:type schema:PropertyValue
    54 Naeba46333fe14920b34e6cacf4fa128c schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Ndb1ec3a88b47443dbe67c29a5cd97003 schema:issueNumber 1
    57 rdf:type schema:PublicationIssue
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Numerical and Computational Mathematics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1050312 schema:issn 0925-5001
    65 1573-2916
    66 schema:name Journal of Global Optimization
    67 rdf:type schema:Periodical
    68 sg:person.010313152515.51 schema:affiliation https://www.grid.ac/institutes/grid.5268.9
    69 schema:familyName Goberna
    70 schema:givenName M. A.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010313152515.51
    72 rdf:type schema:Person
    73 sg:person.012053525153.02 schema:affiliation https://www.grid.ac/institutes/grid.442987.4
    74 schema:familyName Dinh
    75 schema:givenName N.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053525153.02
    77 rdf:type schema:Person
    78 sg:person.0721507112.52 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
    79 schema:familyName Jeyakumar
    80 schema:givenName V.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721507112.52
    82 rdf:type schema:Person
    83 sg:pub.10.1007/0-306-48332-7_133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013776897
    84 https://doi.org/10.1007/0-306-48332-7_133
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/978-3-662-02796-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026756433
    87 https://doi.org/10.1007/978-3-662-02796-7
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1023/a:1009735908398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030469310
    90 https://doi.org/10.1023/a:1009735908398
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1023/a:1021207718605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049805226
    93 https://doi.org/10.1023/a:1021207718605
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1023/a:1022950908783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040562832
    96 https://doi.org/10.1023/a:1022950908783
    97 rdf:type schema:CreativeWork
    98 https://app.dimensions.ai/details/publication/pub.1026756433 schema:CreativeWork
    99 https://doi.org/10.1016/j.ejor.2003.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040293026
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1080/10556780500137066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006412588
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1137/1.9781611971255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098553023
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1137/s1052623402401944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883305
    106 rdf:type schema:CreativeWork
    107 https://www.grid.ac/institutes/grid.1005.4 schema:alternateName UNSW Australia
    108 schema:name Department of Applied Mathematics, University of New South Wales, Sydney, Australia
    109 rdf:type schema:Organization
    110 https://www.grid.ac/institutes/grid.442987.4 schema:alternateName City University
    111 schema:name Department of Mathematics-Informatics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, Distr. 5, HCM city, Vietman
    112 rdf:type schema:Organization
    113 https://www.grid.ac/institutes/grid.5268.9 schema:alternateName University of Alicante
    114 schema:name Department of Statistics and Operations Research, University of Alicante, 03080, Alicante, Spain
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...