Quantitative Effect of Reducing Body Thickness on Visualizing Murine Deep Abdominal Lymph Nodes by In Vivo Fluorescence Reflectance Imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-07

AUTHORS

Yusuke Inoue, Makoto Watanabe, Shigeru Kiryu, Kuni Ohtomo

ABSTRACT

Scattering and absorption in the tissues are major problems for in vivo imaging based on a fluorescence reflectance imaging technique. We evaluated the quantitative relationship between body thickness and fluorescent signals from a deep abdominal source in intact mice. Mice were injected with quantum dots (peak emission, 800 nm) into the right rear footpad, and fluorescent signals from the iliac lymph node located deeply in the abdomen were assessed by fluorescence reflectance imaging. Stepwise compression of the mouse abdomen to reduce the body thickness was attained using a homemade simple device. The iliac node signals were weak and diffuse without compression but became stronger and more localized with decreasing body thickness. Using excitation light of approximately 710 nm wavelength, the lymph node/background contrast increased about 16 times with a 4 mm reduction in body thickness. Contrast enhancement was more evident using shorter wavelength excitation light. Overlying tissues profoundly affect signals from a deep source in fluorescence reflectance imaging. Our simple compression method may contribute to quantitatively assessing deep fluorescent sources. More... »

PAGES

1325-1329

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10895-010-0828-5

DOI

http://dx.doi.org/10.1007/s10895-010-0828-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005610122

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21225323


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Abdomen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Inbred BALB C", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantum Dots", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Fluorescence", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kitasato University", 
          "id": "https://www.grid.ac/institutes/grid.410786.c", 
          "name": [
            "Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inoue", 
        "givenName": "Yusuke", 
        "id": "sg:person.010476276272.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Radiology, Institute of Medical Science, University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Makoto", 
        "id": "sg:person.01127255405.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127255405.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Radiology, Institute of Medical Science, University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiryu", 
        "givenName": "Shigeru", 
        "id": "sg:person.01031733031.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031733031.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohtomo", 
        "givenName": "Kuni", 
        "id": "sg:person.01152022531.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152022531.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002851728", 
          "https://doi.org/10.1038/nbt920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002851728", 
          "https://doi.org/10.1038/nbt920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/86684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008766382", 
          "https://doi.org/10.1038/86684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/86684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008766382", 
          "https://doi.org/10.1038/86684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-006-9347-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014431092", 
          "https://doi.org/10.1007/s10549-006-9347-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-006-9347-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014431092", 
          "https://doi.org/10.1007/s10549-006-9347-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10895-009-0593-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018027029", 
          "https://doi.org/10.1007/s10895-009-0593-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10895-009-0593-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018027029", 
          "https://doi.org/10.1007/s10895-009-0593-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-8-111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038111030", 
          "https://doi.org/10.1186/1471-2407-8-111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bc060261j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055154165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bc060261j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055154165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0707003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0707003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/153535003765276282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063350382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/15353500200302163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063350382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/15353500200302163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063350382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-002-1524-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075222288", 
          "https://doi.org/10.1007/s00330-002-1524-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077058887", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1-59745-369-2:147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077353749", 
          "https://doi.org/10.1385/1-59745-369-2:147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2310/7290.2008.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077627878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2310/7290.2008.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077627878"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07", 
    "datePublishedReg": "2011-07-01", 
    "description": "Scattering and absorption in the tissues are major problems for in vivo imaging based on a fluorescence reflectance imaging technique. We evaluated the quantitative relationship between body thickness and fluorescent signals from a deep abdominal source in intact mice. Mice were injected with quantum dots (peak emission, 800 nm) into the right rear footpad, and fluorescent signals from the iliac lymph node located deeply in the abdomen were assessed by fluorescence reflectance imaging. Stepwise compression of the mouse abdomen to reduce the body thickness was attained using a homemade simple device. The iliac node signals were weak and diffuse without compression but became stronger and more localized with decreasing body thickness. Using excitation light of approximately 710 nm wavelength, the lymph node/background contrast increased about 16 times with a 4 mm reduction in body thickness. Contrast enhancement was more evident using shorter wavelength excitation light. Overlying tissues profoundly affect signals from a deep source in fluorescence reflectance imaging. Our simple compression method may contribute to quantitatively assessing deep fluorescent sources.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10895-010-0828-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1101956", 
        "issn": [
          "1053-0509", 
          "1573-4994"
        ], 
        "name": "Journal of Fluorescence", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Quantitative Effect of Reducing Body Thickness on Visualizing Murine Deep Abdominal Lymph Nodes by In Vivo Fluorescence Reflectance Imaging", 
    "pagination": "1325-1329", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1abaee656d7d4a09660813d647d474f54f6f60c7114546e949269e9b0e13f0d3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21225323"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9201341"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10895-010-0828-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005610122"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10895-010-0828-5", 
      "https://app.dimensions.ai/details/publication/pub.1005610122"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10895-010-0828-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10895-010-0828-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10895-010-0828-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10895-010-0828-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10895-010-0828-5'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      51 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10895-010-0828-5 schema:about N02f3721bb0fd4e4699a3af0344c62a2a
2 N2be82be3108b4aeaa9c66e6a1e4e6d94
3 N348c598e299e4c03927c8508a257dc45
4 N4fa746747ea8487386c05f9b22a1f4d1
5 N57047f2e8b16401c9b182c4e16a5ebe2
6 N83fc7ee4033541d29fd7feecd5a8cbc4
7 N857abff495404208bbe40af761660a99
8 Nb4c7a2bd77c0426cb840048bd46375dd
9 Nc1bd03ec950b4d95aee50e7d99089e65
10 anzsrc-for:02
11 anzsrc-for:0299
12 schema:author N99f0003747b04268b03d00ae393fb1cf
13 schema:citation sg:pub.10.1007/s00330-002-1524-x
14 sg:pub.10.1007/s10549-006-9347-0
15 sg:pub.10.1007/s10895-009-0593-5
16 sg:pub.10.1038/86684
17 sg:pub.10.1038/nbt920
18 sg:pub.10.1186/1471-2407-8-111
19 sg:pub.10.1385/1-59745-369-2:147
20 https://app.dimensions.ai/details/publication/pub.1077058887
21 https://doi.org/10.1021/bc060261j
22 https://doi.org/10.1021/nl0707003
23 https://doi.org/10.1162/15353500200302163
24 https://doi.org/10.1162/153535003765276282
25 https://doi.org/10.2310/7290.2008.0003
26 schema:datePublished 2011-07
27 schema:datePublishedReg 2011-07-01
28 schema:description Scattering and absorption in the tissues are major problems for in vivo imaging based on a fluorescence reflectance imaging technique. We evaluated the quantitative relationship between body thickness and fluorescent signals from a deep abdominal source in intact mice. Mice were injected with quantum dots (peak emission, 800 nm) into the right rear footpad, and fluorescent signals from the iliac lymph node located deeply in the abdomen were assessed by fluorescence reflectance imaging. Stepwise compression of the mouse abdomen to reduce the body thickness was attained using a homemade simple device. The iliac node signals were weak and diffuse without compression but became stronger and more localized with decreasing body thickness. Using excitation light of approximately 710 nm wavelength, the lymph node/background contrast increased about 16 times with a 4 mm reduction in body thickness. Contrast enhancement was more evident using shorter wavelength excitation light. Overlying tissues profoundly affect signals from a deep source in fluorescence reflectance imaging. Our simple compression method may contribute to quantitatively assessing deep fluorescent sources.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N29e2ee19293c42d0ac708cf281f06338
33 Nc545f5a03bda4ffe8d1f0acabb837ac7
34 sg:journal.1101956
35 schema:name Quantitative Effect of Reducing Body Thickness on Visualizing Murine Deep Abdominal Lymph Nodes by In Vivo Fluorescence Reflectance Imaging
36 schema:pagination 1325-1329
37 schema:productId N2084c874eca94930b82a75ba63597a93
38 N6116fad25b0c4426aaa17b4b6db00c8d
39 Nbbd0121b7c7e46f8a4c631db7a9ff635
40 Nf237c49b458a49c3b60482bc1b1ae81d
41 Nfa641488c30540419f917cbbb7de55ba
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005610122
43 https://doi.org/10.1007/s10895-010-0828-5
44 schema:sdDatePublished 2019-04-10T13:15
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Necc908efedb642fea95619ad46fe8a3e
47 schema:url http://link.springer.com/10.1007%2Fs10895-010-0828-5
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N02f3721bb0fd4e4699a3af0344c62a2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Quantum Dots
53 rdf:type schema:DefinedTerm
54 N2084c874eca94930b82a75ba63597a93 schema:name nlm_unique_id
55 schema:value 9201341
56 rdf:type schema:PropertyValue
57 N29e2ee19293c42d0ac708cf281f06338 schema:issueNumber 4
58 rdf:type schema:PublicationIssue
59 N2be82be3108b4aeaa9c66e6a1e4e6d94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Mice, Inbred BALB C
61 rdf:type schema:DefinedTerm
62 N348c598e299e4c03927c8508a257dc45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Female
64 rdf:type schema:DefinedTerm
65 N4fa746747ea8487386c05f9b22a1f4d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Mice
67 rdf:type schema:DefinedTerm
68 N57047f2e8b16401c9b182c4e16a5ebe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Lymph Nodes
70 rdf:type schema:DefinedTerm
71 N6116fad25b0c4426aaa17b4b6db00c8d schema:name pubmed_id
72 schema:value 21225323
73 rdf:type schema:PropertyValue
74 N706c3024be634aff8b18c0a0025db173 rdf:first sg:person.01031733031.17
75 rdf:rest Nf7506a7c50ae4e79beb0f0f05280dd30
76 N7e9a3540e7dd43248e8d440b182c60fc rdf:first sg:person.01127255405.40
77 rdf:rest N706c3024be634aff8b18c0a0025db173
78 N83fc7ee4033541d29fd7feecd5a8cbc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Spectrometry, Fluorescence
80 rdf:type schema:DefinedTerm
81 N857abff495404208bbe40af761660a99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Molecular Imaging
83 rdf:type schema:DefinedTerm
84 N99f0003747b04268b03d00ae393fb1cf rdf:first sg:person.010476276272.43
85 rdf:rest N7e9a3540e7dd43248e8d440b182c60fc
86 Nb4c7a2bd77c0426cb840048bd46375dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Abdomen
88 rdf:type schema:DefinedTerm
89 Nbbd0121b7c7e46f8a4c631db7a9ff635 schema:name readcube_id
90 schema:value 1abaee656d7d4a09660813d647d474f54f6f60c7114546e949269e9b0e13f0d3
91 rdf:type schema:PropertyValue
92 Nc1bd03ec950b4d95aee50e7d99089e65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Animals
94 rdf:type schema:DefinedTerm
95 Nc545f5a03bda4ffe8d1f0acabb837ac7 schema:volumeNumber 21
96 rdf:type schema:PublicationVolume
97 Necc908efedb642fea95619ad46fe8a3e schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nf237c49b458a49c3b60482bc1b1ae81d schema:name doi
100 schema:value 10.1007/s10895-010-0828-5
101 rdf:type schema:PropertyValue
102 Nf7506a7c50ae4e79beb0f0f05280dd30 rdf:first sg:person.01152022531.08
103 rdf:rest rdf:nil
104 Nfa641488c30540419f917cbbb7de55ba schema:name dimensions_id
105 schema:value pub.1005610122
106 rdf:type schema:PropertyValue
107 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
111 schema:name Other Physical Sciences
112 rdf:type schema:DefinedTerm
113 sg:journal.1101956 schema:issn 1053-0509
114 1573-4994
115 schema:name Journal of Fluorescence
116 rdf:type schema:Periodical
117 sg:person.01031733031.17 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
118 schema:familyName Kiryu
119 schema:givenName Shigeru
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031733031.17
121 rdf:type schema:Person
122 sg:person.010476276272.43 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
123 schema:familyName Inoue
124 schema:givenName Yusuke
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43
126 rdf:type schema:Person
127 sg:person.01127255405.40 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
128 schema:familyName Watanabe
129 schema:givenName Makoto
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127255405.40
131 rdf:type schema:Person
132 sg:person.01152022531.08 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
133 schema:familyName Ohtomo
134 schema:givenName Kuni
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152022531.08
136 rdf:type schema:Person
137 sg:pub.10.1007/s00330-002-1524-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1075222288
138 https://doi.org/10.1007/s00330-002-1524-x
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10549-006-9347-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014431092
141 https://doi.org/10.1007/s10549-006-9347-0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10895-009-0593-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018027029
144 https://doi.org/10.1007/s10895-009-0593-5
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/86684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008766382
147 https://doi.org/10.1038/86684
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nbt920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002851728
150 https://doi.org/10.1038/nbt920
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/1471-2407-8-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038111030
153 https://doi.org/10.1186/1471-2407-8-111
154 rdf:type schema:CreativeWork
155 sg:pub.10.1385/1-59745-369-2:147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077353749
156 https://doi.org/10.1385/1-59745-369-2:147
157 rdf:type schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1077058887 schema:CreativeWork
159 https://doi.org/10.1021/bc060261j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055154165
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/nl0707003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217209
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1162/15353500200302163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063350382
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1162/153535003765276282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063350382
166 rdf:type schema:CreativeWork
167 https://doi.org/10.2310/7290.2008.0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077627878
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
170 schema:name Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
171 Department of Radiology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.410786.c schema:alternateName Kitasato University
174 schema:name Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...