Ontology type: schema:ScholarlyArticle
2021-08-20
AUTHORSAmrita Bhattacharya, Joydeep Ghosh, M. B. Chowdhuri, Ashoke De
ABSTRACTThe present study details the generalization of a stability condition for the semi-implicit formulation of the one-dimensional impurity transport equation for tokamak plasmas in terms of the magnetic flux surface coordinate system (ρ). The radial impurity transport equation for tokamak plasmas is a set of non-linear, parabolic, partial differential equations, solving which generates the radial distributions of all impurity charge states (Z) within the plasma. The present study illustrates the application of a semi-implicit method over the ρ-based impurity transport equation, generated by applying a transformation of the coordinate for the poloidal cross-section of the torus-shaped plasma confinement system, from its geometric radius (r) to the magnetic flux surface coordinate system (ρ). The study further discusses the von Neumann stability analysis of the numerical scheme applied to this transformed (ρ-based) impurity transport equation. The von Neumann stability analysis of the semi-implicit formulation of the radial impurity transport equation has been reported earlier. The stability condition derived in this study is, therefore, a generalization to the earlier reported stability condition now applicable to all ρ(r) including the specific case ρ = r considered in the earlier study. The effects of the impurity transport coefficient (D and v) profiles and the plasma and impurity parameter profiles on the derived ρ-based stability condition are analysed in this study. The impurity element considered is oxygen (1 ≤ Z ≤ 8) and the geometry and plasma parameters of the ADITYA tokamak are applied to the cases studied for consistency. More... »
PAGES20
http://scigraph.springernature.com/pub.10.1007/s10894-021-00308-2
DOIhttp://dx.doi.org/10.1007/s10894-021-00308-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1140551385
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Aerospace Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India",
"id": "http://www.grid.ac/institutes/grid.417965.8",
"name": [
"Department of Aerospace Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India"
],
"type": "Organization"
},
"familyName": "Bhattacharya",
"givenName": "Amrita",
"id": "sg:person.011331025050.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331025050.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Homi Bhabha National Institute, 400094, Mumbai, Maharashtra, India",
"id": "http://www.grid.ac/institutes/grid.450257.1",
"name": [
"Institute for Plasma Research, 382428, Gandhinagar, Bhat, Gujarat, India",
"Homi Bhabha National Institute, 400094, Mumbai, Maharashtra, India"
],
"type": "Organization"
},
"familyName": "Ghosh",
"givenName": "Joydeep",
"id": "sg:person.01146246562.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146246562.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Plasma Research, 382428, Gandhinagar, Bhat, Gujarat, India",
"id": "http://www.grid.ac/institutes/grid.502813.d",
"name": [
"Institute for Plasma Research, 382428, Gandhinagar, Bhat, Gujarat, India"
],
"type": "Organization"
},
"familyName": "Chowdhuri",
"givenName": "M. B.",
"id": "sg:person.015060740613.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015060740613.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Aerospace Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India",
"id": "http://www.grid.ac/institutes/grid.417965.8",
"name": [
"Department of Aerospace Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India"
],
"type": "Organization"
},
"familyName": "De",
"givenName": "Ashoke",
"id": "sg:person.014263460742.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014263460742.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/b:bitn.0000009942.00540.94",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011425143",
"https://doi.org/10.1023/b:bitn.0000009942.00540.94"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10543-010-0249-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048912838",
"https://doi.org/10.1007/s10543-010-0249-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10894-018-0188-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106895199",
"https://doi.org/10.1007/s10894-018-0188-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-08-20",
"datePublishedReg": "2021-08-20",
"description": "The present study details the generalization of a stability condition for the semi-implicit formulation of the one-dimensional impurity transport equation for tokamak plasmas in terms of the magnetic flux surface coordinate system (\u03c1). The radial impurity transport equation for tokamak plasmas is a set of non-linear, parabolic, partial differential equations, solving which generates the radial distributions of all impurity charge states (Z) within the plasma. The present study illustrates the application of a semi-implicit method over the \u03c1-based impurity transport equation, generated by applying a transformation of the coordinate for the poloidal cross-section of the torus-shaped plasma confinement system, from its geometric radius (r) to the magnetic flux surface coordinate system (\u03c1). The study further discusses the von Neumann stability analysis of the numerical scheme applied to this transformed (\u03c1-based) impurity transport equation. The von Neumann stability analysis of the semi-implicit formulation of the radial impurity transport equation has been reported earlier. The stability condition derived in this study is, therefore, a generalization to the earlier reported stability condition now applicable to all \u03c1(r) including the specific case \u03c1\u2009=\u2009r considered in the earlier study. The effects of the impurity transport coefficient (D and v) profiles and the plasma and impurity parameter profiles on the derived \u03c1-based stability condition are analysed in this study. The impurity element considered is oxygen (1\u2009\u2264\u2009Z\u2009\u2264\u20098) and the geometry and plasma parameters of the ADITYA tokamak are applied to the cases studied for consistency.",
"genre": "article",
"id": "sg:pub.10.1007/s10894-021-00308-2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136717",
"issn": [
"0164-0313",
"1572-9591"
],
"name": "Journal of Fusion Energy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "40"
}
],
"keywords": [
"von Neumann stability analysis",
"semi-implicit formulation",
"magnetic flux surfaces",
"transport equation",
"stability conditions",
"tokamak plasmas",
"flux surfaces",
"stability analysis",
"partial differential equations",
"impurity charge states",
"plasma confinement systems",
"semi-implicit method",
"differential equations",
"numerical scheme",
"equations",
"plasma parameters",
"geometric radius",
"parameter profiles",
"Aditya tokamak",
"surface coordinates",
"generalization",
"confinement system",
"radial distribution",
"coordinates",
"formulation",
"specific case",
"charge state",
"parabolic",
"coefficient profiles",
"tokamak",
"geometry",
"scheme",
"system",
"terms",
"plasma",
"parameters",
"set",
"radius",
"conditions",
"distribution",
"cases",
"applications",
"detail",
"transformation",
"surface",
"state",
"analysis",
"profile",
"consistency",
"impurity elements",
"elements",
"earlier studies",
"present study details",
"effect",
"study",
"study details",
"oxygen",
"present study",
"method"
],
"name": "Generalization of the Stability Condition for the Semi\u2013Implicit Formulation of the Radial Impurity Transport Equation in Tokamak Plasma in Terms of the Magnetic Flux Surface Coordinate",
"pagination": "20",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140551385"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10894-021-00308-2"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10894-021-00308-2",
"https://app.dimensions.ai/details/publication/pub.1140551385"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10894-021-00308-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00308-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00308-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00308-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00308-2'
This table displays all metadata directly associated to this object as RDF triples.
157 TRIPLES
22 PREDICATES
87 URIs
76 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10894-021-00308-2 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N0596521a60324f66b668c8c97a5ee9f0 |
4 | ″ | schema:citation | sg:pub.10.1007/s10543-010-0249-5 |
5 | ″ | ″ | sg:pub.10.1007/s10894-018-0188-8 |
6 | ″ | ″ | sg:pub.10.1023/b:bitn.0000009942.00540.94 |
7 | ″ | schema:datePublished | 2021-08-20 |
8 | ″ | schema:datePublishedReg | 2021-08-20 |
9 | ″ | schema:description | The present study details the generalization of a stability condition for the semi-implicit formulation of the one-dimensional impurity transport equation for tokamak plasmas in terms of the magnetic flux surface coordinate system (ρ). The radial impurity transport equation for tokamak plasmas is a set of non-linear, parabolic, partial differential equations, solving which generates the radial distributions of all impurity charge states (Z) within the plasma. The present study illustrates the application of a semi-implicit method over the ρ-based impurity transport equation, generated by applying a transformation of the coordinate for the poloidal cross-section of the torus-shaped plasma confinement system, from its geometric radius (r) to the magnetic flux surface coordinate system (ρ). The study further discusses the von Neumann stability analysis of the numerical scheme applied to this transformed (ρ-based) impurity transport equation. The von Neumann stability analysis of the semi-implicit formulation of the radial impurity transport equation has been reported earlier. The stability condition derived in this study is, therefore, a generalization to the earlier reported stability condition now applicable to all ρ(r) including the specific case ρ = r considered in the earlier study. The effects of the impurity transport coefficient (D and v) profiles and the plasma and impurity parameter profiles on the derived ρ-based stability condition are analysed in this study. The impurity element considered is oxygen (1 ≤ Z ≤ 8) and the geometry and plasma parameters of the ADITYA tokamak are applied to the cases studied for consistency. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N04799a9729b94c24b9f4273a5fad8ad7 |
14 | ″ | ″ | Nbf1f76d1596144078f3ba22cd8804713 |
15 | ″ | ″ | sg:journal.1136717 |
16 | ″ | schema:keywords | Aditya tokamak |
17 | ″ | ″ | analysis |
18 | ″ | ″ | applications |
19 | ″ | ″ | cases |
20 | ″ | ″ | charge state |
21 | ″ | ″ | coefficient profiles |
22 | ″ | ″ | conditions |
23 | ″ | ″ | confinement system |
24 | ″ | ″ | consistency |
25 | ″ | ″ | coordinates |
26 | ″ | ″ | detail |
27 | ″ | ″ | differential equations |
28 | ″ | ″ | distribution |
29 | ″ | ″ | earlier studies |
30 | ″ | ″ | effect |
31 | ″ | ″ | elements |
32 | ″ | ″ | equations |
33 | ″ | ″ | flux surfaces |
34 | ″ | ″ | formulation |
35 | ″ | ″ | generalization |
36 | ″ | ″ | geometric radius |
37 | ″ | ″ | geometry |
38 | ″ | ″ | impurity charge states |
39 | ″ | ″ | impurity elements |
40 | ″ | ″ | magnetic flux surfaces |
41 | ″ | ″ | method |
42 | ″ | ″ | numerical scheme |
43 | ″ | ″ | oxygen |
44 | ″ | ″ | parabolic |
45 | ″ | ″ | parameter profiles |
46 | ″ | ″ | parameters |
47 | ″ | ″ | partial differential equations |
48 | ″ | ″ | plasma |
49 | ″ | ″ | plasma confinement systems |
50 | ″ | ″ | plasma parameters |
51 | ″ | ″ | present study |
52 | ″ | ″ | present study details |
53 | ″ | ″ | profile |
54 | ″ | ″ | radial distribution |
55 | ″ | ″ | radius |
56 | ″ | ″ | scheme |
57 | ″ | ″ | semi-implicit formulation |
58 | ″ | ″ | semi-implicit method |
59 | ″ | ″ | set |
60 | ″ | ″ | specific case |
61 | ″ | ″ | stability analysis |
62 | ″ | ″ | stability conditions |
63 | ″ | ″ | state |
64 | ″ | ″ | study |
65 | ″ | ″ | study details |
66 | ″ | ″ | surface |
67 | ″ | ″ | surface coordinates |
68 | ″ | ″ | system |
69 | ″ | ″ | terms |
70 | ″ | ″ | tokamak |
71 | ″ | ″ | tokamak plasmas |
72 | ″ | ″ | transformation |
73 | ″ | ″ | transport equation |
74 | ″ | ″ | von Neumann stability analysis |
75 | ″ | schema:name | Generalization of the Stability Condition for the Semi–Implicit Formulation of the Radial Impurity Transport Equation in Tokamak Plasma in Terms of the Magnetic Flux Surface Coordinate |
76 | ″ | schema:pagination | 20 |
77 | ″ | schema:productId | N1f5ef67a4080465f9f14b8323f14826a |
78 | ″ | ″ | N7f111e9dc44941adbc7ebdeeba242e54 |
79 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1140551385 |
80 | ″ | ″ | https://doi.org/10.1007/s10894-021-00308-2 |
81 | ″ | schema:sdDatePublished | 2022-05-20T07:37 |
82 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
83 | ″ | schema:sdPublisher | N593d24e2e5f247228800cede956e7f53 |
84 | ″ | schema:url | https://doi.org/10.1007/s10894-021-00308-2 |
85 | ″ | sgo:license | sg:explorer/license/ |
86 | ″ | sgo:sdDataset | articles |
87 | ″ | rdf:type | schema:ScholarlyArticle |
88 | N04799a9729b94c24b9f4273a5fad8ad7 | schema:volumeNumber | 40 |
89 | ″ | rdf:type | schema:PublicationVolume |
90 | N0596521a60324f66b668c8c97a5ee9f0 | rdf:first | sg:person.011331025050.58 |
91 | ″ | rdf:rest | N9bbd4903fc164dac844fd3d40a31ca0b |
92 | N1f5ef67a4080465f9f14b8323f14826a | schema:name | doi |
93 | ″ | schema:value | 10.1007/s10894-021-00308-2 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | N593d24e2e5f247228800cede956e7f53 | schema:name | Springer Nature - SN SciGraph project |
96 | ″ | rdf:type | schema:Organization |
97 | N7f111e9dc44941adbc7ebdeeba242e54 | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1140551385 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N80171888105f469aaa31decd78080db7 | rdf:first | sg:person.014263460742.49 |
101 | ″ | rdf:rest | rdf:nil |
102 | N877900618f8d4316838e700a5021f8be | rdf:first | sg:person.015060740613.08 |
103 | ″ | rdf:rest | N80171888105f469aaa31decd78080db7 |
104 | N9bbd4903fc164dac844fd3d40a31ca0b | rdf:first | sg:person.01146246562.90 |
105 | ″ | rdf:rest | N877900618f8d4316838e700a5021f8be |
106 | Nbf1f76d1596144078f3ba22cd8804713 | schema:issueNumber | 2 |
107 | ″ | rdf:type | schema:PublicationIssue |
108 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Physical Sciences |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | sg:journal.1136717 | schema:issn | 0164-0313 |
115 | ″ | ″ | 1572-9591 |
116 | ″ | schema:name | Journal of Fusion Energy |
117 | ″ | schema:publisher | Springer Nature |
118 | ″ | rdf:type | schema:Periodical |
119 | sg:person.011331025050.58 | schema:affiliation | grid-institutes:grid.417965.8 |
120 | ″ | schema:familyName | Bhattacharya |
121 | ″ | schema:givenName | Amrita |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331025050.58 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.01146246562.90 | schema:affiliation | grid-institutes:grid.450257.1 |
125 | ″ | schema:familyName | Ghosh |
126 | ″ | schema:givenName | Joydeep |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146246562.90 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.014263460742.49 | schema:affiliation | grid-institutes:grid.417965.8 |
130 | ″ | schema:familyName | De |
131 | ″ | schema:givenName | Ashoke |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014263460742.49 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.015060740613.08 | schema:affiliation | grid-institutes:grid.502813.d |
135 | ″ | schema:familyName | Chowdhuri |
136 | ″ | schema:givenName | M. B. |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015060740613.08 |
138 | ″ | rdf:type | schema:Person |
139 | sg:pub.10.1007/s10543-010-0249-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048912838 |
140 | ″ | ″ | https://doi.org/10.1007/s10543-010-0249-5 |
141 | ″ | rdf:type | schema:CreativeWork |
142 | sg:pub.10.1007/s10894-018-0188-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1106895199 |
143 | ″ | ″ | https://doi.org/10.1007/s10894-018-0188-8 |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1023/b:bitn.0000009942.00540.94 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011425143 |
146 | ″ | ″ | https://doi.org/10.1023/b:bitn.0000009942.00540.94 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | grid-institutes:grid.417965.8 | schema:alternateName | Department of Aerospace Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India |
149 | ″ | schema:name | Department of Aerospace Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India |
150 | ″ | rdf:type | schema:Organization |
151 | grid-institutes:grid.450257.1 | schema:alternateName | Homi Bhabha National Institute, 400094, Mumbai, Maharashtra, India |
152 | ″ | schema:name | Homi Bhabha National Institute, 400094, Mumbai, Maharashtra, India |
153 | ″ | ″ | Institute for Plasma Research, 382428, Gandhinagar, Bhat, Gujarat, India |
154 | ″ | rdf:type | schema:Organization |
155 | grid-institutes:grid.502813.d | schema:alternateName | Institute for Plasma Research, 382428, Gandhinagar, Bhat, Gujarat, India |
156 | ″ | schema:name | Institute for Plasma Research, 382428, Gandhinagar, Bhat, Gujarat, India |
157 | ″ | rdf:type | schema:Organization |