Potential Early Markets for Fusion Energy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-10

AUTHORS

Malcolm C. Handley, Daniel Slesinski, Scott C. Hsu

ABSTRACT

We examine potential early markets for fusion energy and their projected cost targets, based on analysis and synthesis of many relevant, recent studies and reports. Seeking to provide guidance to ambitious fusion developers aspiring to enable commercial deployment before 2040, we examine cost requirements for fusion-generated electricity, process heat, and hydrogen production based on today’s market prices but with various adjustments relating to possible scenarios in 2035, such as “business-as-usual,” high renewables penetration, and carbon pricing up to 100 $/tCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {tCO}_2$$\end{document}. Key findings are that fusion developers should consider focusing initially on high-priced global electricity markets and consider including integrated thermal storage, depending on techno-economic factors, in order to maximize revenue and compete in markets with high renewables penetration. Process heat and hydrogen production will be tough early markets for fusion, but may open up to fusion as markets evolve and if fusion’s levelized cost of electricity falls below 50 $/MWhe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MWh}_{\mathrm {e}}$$\end{document}. Finally, we discuss potential ways for a fusion plant to increase revenue via cogeneration (e.g., desalination, direct air capture, or district heating) and to lower capital costs (e.g., by minimizing construction times and interest or by retrofitting coal plants). More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4

DOI

http://dx.doi.org/10.1007/s10894-021-00306-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139610656


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.452988.a", 
          "name": [
            "Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Handley", 
        "givenName": "Malcolm C.", 
        "id": "sg:person.013671472003.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671472003.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.452988.a", 
          "name": [
            "Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slesinski", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.452988.a", 
          "name": [
            "Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "Scott C.", 
        "id": "sg:person.010761706313.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010761706313.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41467-020-20437-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134551743", 
          "https://doi.org/10.1038/s41467-020-20437-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10894-015-0034-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033130515", 
          "https://doi.org/10.1007/s10894-015-0034-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091206874", 
          "https://doi.org/10.1038/nclimate3369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10894-019-00226-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121579074", 
          "https://doi.org/10.1007/s10894-019-00226-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41545-019-0039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120019866", 
          "https://doi.org/10.1038/s41545-019-0039-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-07-10", 
    "datePublishedReg": "2021-07-10", 
    "description": "We examine potential early markets for fusion energy and their projected cost targets, based on analysis and synthesis of many relevant, recent studies and reports. Seeking to provide guidance to ambitious fusion developers aspiring to enable commercial deployment before 2040, we examine cost requirements for fusion-generated electricity, process heat, and hydrogen production based on today\u2019s market prices but with various adjustments relating to possible scenarios in 2035, such as \u201cbusiness-as-usual,\u201d high renewables penetration, and carbon pricing up to 100\u00a0$/tCO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {tCO}_2$$\\end{document}. Key findings are that fusion developers should consider focusing initially on high-priced global electricity markets and consider including integrated thermal storage, depending on techno-economic factors, in order to maximize revenue and compete in markets with high renewables penetration. Process heat and hydrogen production will be tough early markets for fusion, but may open up to fusion as markets evolve and if fusion\u2019s levelized cost of electricity falls below 50\u00a0$/MWhe\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {MWh}_{\\mathrm {e}}$$\\end{document}. Finally, we discuss potential ways for a fusion plant to increase revenue via cogeneration (e.g., desalination, direct air capture, or district heating) and to lower capital costs (e.g., by minimizing construction times and interest or by retrofitting coal plants).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10894-021-00306-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136717", 
        "issn": [
          "0164-0313", 
          "1572-9591"
        ], 
        "name": "Journal of Fusion Energy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "high renewable penetration", 
      "process heat", 
      "levelized cost", 
      "renewable penetration", 
      "hydrogen production", 
      "fusion energy", 
      "today's market prices", 
      "thermal storage", 
      "global electricity market", 
      "techno-economic factors", 
      "capital cost", 
      "fusion plants", 
      "early market", 
      "cost targets", 
      "electricity market", 
      "cost requirements", 
      "electricity", 
      "commercial deployment", 
      "heat", 
      "cogeneration", 
      "energy", 
      "penetration", 
      "market prices", 
      "cost", 
      "potential way", 
      "possible scenarios", 
      "carbon pricing", 
      "storage", 
      "requirements", 
      "production", 
      "order", 
      "deployment", 
      "scenarios", 
      "fusion", 
      "plants", 
      "analysis", 
      "market", 
      "guidance", 
      "key findings", 
      "synthesis", 
      "prices", 
      "way", 
      "study", 
      "adjustment", 
      "revenue", 
      "developers", 
      "factors", 
      "target", 
      "pricing", 
      "Recent studies", 
      "report", 
      "findings", 
      "business"
    ], 
    "name": "Potential Early Markets for Fusion Energy", 
    "pagination": "18", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139610656"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10894-021-00306-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10894-021-00306-4", 
      "https://app.dimensions.ai/details/publication/pub.1139610656"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_919.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10894-021-00306-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      22 PREDICATES      83 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10894-021-00306-4 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N4099598b98144291a46d1f9739dd1559
4 schema:citation sg:pub.10.1007/s10894-015-0034-1
5 sg:pub.10.1007/s10894-019-00226-4
6 sg:pub.10.1038/nclimate3369
7 sg:pub.10.1038/s41467-020-20437-0
8 sg:pub.10.1038/s41545-019-0039-9
9 schema:datePublished 2021-07-10
10 schema:datePublishedReg 2021-07-10
11 schema:description We examine potential early markets for fusion energy and their projected cost targets, based on analysis and synthesis of many relevant, recent studies and reports. Seeking to provide guidance to ambitious fusion developers aspiring to enable commercial deployment before 2040, we examine cost requirements for fusion-generated electricity, process heat, and hydrogen production based on today’s market prices but with various adjustments relating to possible scenarios in 2035, such as “business-as-usual,” high renewables penetration, and carbon pricing up to 100 $/tCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {tCO}_2$$\end{document}. Key findings are that fusion developers should consider focusing initially on high-priced global electricity markets and consider including integrated thermal storage, depending on techno-economic factors, in order to maximize revenue and compete in markets with high renewables penetration. Process heat and hydrogen production will be tough early markets for fusion, but may open up to fusion as markets evolve and if fusion’s levelized cost of electricity falls below 50 $/MWhe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MWh}_{\mathrm {e}}$$\end{document}. Finally, we discuss potential ways for a fusion plant to increase revenue via cogeneration (e.g., desalination, direct air capture, or district heating) and to lower capital costs (e.g., by minimizing construction times and interest or by retrofitting coal plants).
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N0ab4e1e4efbf43988e266b4a7bfa8ba7
16 N35d74483bff84471931f613d810585c8
17 sg:journal.1136717
18 schema:keywords Recent studies
19 adjustment
20 analysis
21 business
22 capital cost
23 carbon pricing
24 cogeneration
25 commercial deployment
26 cost
27 cost requirements
28 cost targets
29 deployment
30 developers
31 early market
32 electricity
33 electricity market
34 energy
35 factors
36 findings
37 fusion
38 fusion energy
39 fusion plants
40 global electricity market
41 guidance
42 heat
43 high renewable penetration
44 hydrogen production
45 key findings
46 levelized cost
47 market
48 market prices
49 order
50 penetration
51 plants
52 possible scenarios
53 potential way
54 prices
55 pricing
56 process heat
57 production
58 renewable penetration
59 report
60 requirements
61 revenue
62 scenarios
63 storage
64 study
65 synthesis
66 target
67 techno-economic factors
68 thermal storage
69 today's market prices
70 way
71 schema:name Potential Early Markets for Fusion Energy
72 schema:pagination 18
73 schema:productId N811089dc7c3f4d23ae47bd1a5bd078b8
74 N9ecf73ce9cbd4479b0f5fd9912f9abbb
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139610656
76 https://doi.org/10.1007/s10894-021-00306-4
77 schema:sdDatePublished 2022-05-20T07:40
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N784b76e4d80a45e2a1fb4cc7fc92d6a5
80 schema:url https://doi.org/10.1007/s10894-021-00306-4
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0ab4e1e4efbf43988e266b4a7bfa8ba7 schema:issueNumber 2
85 rdf:type schema:PublicationIssue
86 N278ac50f09a6413ea45bfbec132405f7 schema:affiliation grid-institutes:grid.452988.a
87 schema:familyName Slesinski
88 schema:givenName Daniel
89 rdf:type schema:Person
90 N35d74483bff84471931f613d810585c8 schema:volumeNumber 40
91 rdf:type schema:PublicationVolume
92 N4099598b98144291a46d1f9739dd1559 rdf:first sg:person.013671472003.28
93 rdf:rest Ncac64f9b711649b0a759927b67caa3f5
94 N784b76e4d80a45e2a1fb4cc7fc92d6a5 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N811089dc7c3f4d23ae47bd1a5bd078b8 schema:name doi
97 schema:value 10.1007/s10894-021-00306-4
98 rdf:type schema:PropertyValue
99 N9ecf73ce9cbd4479b0f5fd9912f9abbb schema:name dimensions_id
100 schema:value pub.1139610656
101 rdf:type schema:PropertyValue
102 Ncac64f9b711649b0a759927b67caa3f5 rdf:first N278ac50f09a6413ea45bfbec132405f7
103 rdf:rest Ncf1180e938ed45d186d36ca478008210
104 Ncf1180e938ed45d186d36ca478008210 rdf:first sg:person.010761706313.42
105 rdf:rest rdf:nil
106 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
107 schema:name Economics
108 rdf:type schema:DefinedTerm
109 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
110 schema:name Applied Economics
111 rdf:type schema:DefinedTerm
112 sg:journal.1136717 schema:issn 0164-0313
113 1572-9591
114 schema:name Journal of Fusion Energy
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.010761706313.42 schema:affiliation grid-institutes:grid.452988.a
118 schema:familyName Hsu
119 schema:givenName Scott C.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010761706313.42
121 rdf:type schema:Person
122 sg:person.013671472003.28 schema:affiliation grid-institutes:grid.452988.a
123 schema:familyName Handley
124 schema:givenName Malcolm C.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671472003.28
126 rdf:type schema:Person
127 sg:pub.10.1007/s10894-015-0034-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033130515
128 https://doi.org/10.1007/s10894-015-0034-1
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10894-019-00226-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121579074
131 https://doi.org/10.1007/s10894-019-00226-4
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nclimate3369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091206874
134 https://doi.org/10.1038/nclimate3369
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/s41467-020-20437-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134551743
137 https://doi.org/10.1038/s41467-020-20437-0
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/s41545-019-0039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120019866
140 https://doi.org/10.1038/s41545-019-0039-9
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.452988.a schema:alternateName Advanced Research Projects Agency–Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA
143 schema:name Advanced Research Projects Agency–Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...