Ontology type: schema:ScholarlyArticle Open Access: True
2021-07-10
AUTHORSMalcolm C. Handley, Daniel Slesinski, Scott C. Hsu
ABSTRACTWe examine potential early markets for fusion energy and their projected cost targets, based on analysis and synthesis of many relevant, recent studies and reports. Seeking to provide guidance to ambitious fusion developers aspiring to enable commercial deployment before 2040, we examine cost requirements for fusion-generated electricity, process heat, and hydrogen production based on today’s market prices but with various adjustments relating to possible scenarios in 2035, such as “business-as-usual,” high renewables penetration, and carbon pricing up to 100 $/tCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {tCO}_2$$\end{document}. Key findings are that fusion developers should consider focusing initially on high-priced global electricity markets and consider including integrated thermal storage, depending on techno-economic factors, in order to maximize revenue and compete in markets with high renewables penetration. Process heat and hydrogen production will be tough early markets for fusion, but may open up to fusion as markets evolve and if fusion’s levelized cost of electricity falls below 50 $/MWhe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MWh}_{\mathrm {e}}$$\end{document}. Finally, we discuss potential ways for a fusion plant to increase revenue via cogeneration (e.g., desalination, direct air capture, or district heating) and to lower capital costs (e.g., by minimizing construction times and interest or by retrofitting coal plants). More... »
PAGES18
http://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4
DOIhttp://dx.doi.org/10.1007/s10894-021-00306-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1139610656
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Economics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA",
"id": "http://www.grid.ac/institutes/grid.452988.a",
"name": [
"Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA"
],
"type": "Organization"
},
"familyName": "Handley",
"givenName": "Malcolm C.",
"id": "sg:person.013671472003.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671472003.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA",
"id": "http://www.grid.ac/institutes/grid.452988.a",
"name": [
"Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA"
],
"type": "Organization"
},
"familyName": "Slesinski",
"givenName": "Daniel",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA",
"id": "http://www.grid.ac/institutes/grid.452988.a",
"name": [
"Advanced Research Projects Agency\u2013Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA"
],
"type": "Organization"
},
"familyName": "Hsu",
"givenName": "Scott C.",
"id": "sg:person.010761706313.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010761706313.42"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/s41467-020-20437-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1134551743",
"https://doi.org/10.1038/s41467-020-20437-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10894-015-0034-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033130515",
"https://doi.org/10.1007/s10894-015-0034-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nclimate3369",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091206874",
"https://doi.org/10.1038/nclimate3369"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10894-019-00226-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121579074",
"https://doi.org/10.1007/s10894-019-00226-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41545-019-0039-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120019866",
"https://doi.org/10.1038/s41545-019-0039-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-07-10",
"datePublishedReg": "2021-07-10",
"description": "We examine potential early markets for fusion energy and their projected cost targets, based on analysis and synthesis of many relevant, recent studies and reports. Seeking to provide guidance to ambitious fusion developers aspiring to enable commercial deployment before 2040, we examine cost requirements for fusion-generated electricity, process heat, and hydrogen production based on today\u2019s market prices but with various adjustments relating to possible scenarios in 2035, such as \u201cbusiness-as-usual,\u201d high renewables penetration, and carbon pricing up to 100\u00a0$/tCO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {tCO}_2$$\\end{document}. Key findings are that fusion developers should consider focusing initially on high-priced global electricity markets and consider including integrated thermal storage, depending on techno-economic factors, in order to maximize revenue and compete in markets with high renewables penetration. Process heat and hydrogen production will be tough early markets for fusion, but may open up to fusion as markets evolve and if fusion\u2019s levelized cost of electricity falls below 50\u00a0$/MWhe\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {MWh}_{\\mathrm {e}}$$\\end{document}. Finally, we discuss potential ways for a fusion plant to increase revenue via cogeneration (e.g., desalination, direct air capture, or district heating) and to lower capital costs (e.g., by minimizing construction times and interest or by retrofitting coal plants).",
"genre": "article",
"id": "sg:pub.10.1007/s10894-021-00306-4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136717",
"issn": [
"0164-0313",
"1572-9591"
],
"name": "Journal of Fusion Energy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "40"
}
],
"keywords": [
"high renewable penetration",
"process heat",
"levelized cost",
"renewable penetration",
"hydrogen production",
"fusion energy",
"today's market prices",
"thermal storage",
"global electricity market",
"techno-economic factors",
"capital cost",
"fusion plants",
"early market",
"cost targets",
"electricity market",
"cost requirements",
"electricity",
"commercial deployment",
"heat",
"cogeneration",
"energy",
"penetration",
"market prices",
"cost",
"potential way",
"possible scenarios",
"carbon pricing",
"storage",
"requirements",
"production",
"order",
"deployment",
"scenarios",
"fusion",
"plants",
"analysis",
"market",
"guidance",
"key findings",
"synthesis",
"prices",
"way",
"study",
"adjustment",
"revenue",
"developers",
"factors",
"target",
"pricing",
"Recent studies",
"report",
"findings",
"business"
],
"name": "Potential Early Markets for Fusion Energy",
"pagination": "18",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1139610656"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10894-021-00306-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10894-021-00306-4",
"https://app.dimensions.ai/details/publication/pub.1139610656"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_919.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10894-021-00306-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00306-4'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
22 PREDICATES
83 URIs
70 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10894-021-00306-4 | schema:about | anzsrc-for:14 |
2 | ″ | ″ | anzsrc-for:1402 |
3 | ″ | schema:author | N4099598b98144291a46d1f9739dd1559 |
4 | ″ | schema:citation | sg:pub.10.1007/s10894-015-0034-1 |
5 | ″ | ″ | sg:pub.10.1007/s10894-019-00226-4 |
6 | ″ | ″ | sg:pub.10.1038/nclimate3369 |
7 | ″ | ″ | sg:pub.10.1038/s41467-020-20437-0 |
8 | ″ | ″ | sg:pub.10.1038/s41545-019-0039-9 |
9 | ″ | schema:datePublished | 2021-07-10 |
10 | ″ | schema:datePublishedReg | 2021-07-10 |
11 | ″ | schema:description | We examine potential early markets for fusion energy and their projected cost targets, based on analysis and synthesis of many relevant, recent studies and reports. Seeking to provide guidance to ambitious fusion developers aspiring to enable commercial deployment before 2040, we examine cost requirements for fusion-generated electricity, process heat, and hydrogen production based on today’s market prices but with various adjustments relating to possible scenarios in 2035, such as “business-as-usual,” high renewables penetration, and carbon pricing up to 100 $/tCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {tCO}_2$$\end{document}. Key findings are that fusion developers should consider focusing initially on high-priced global electricity markets and consider including integrated thermal storage, depending on techno-economic factors, in order to maximize revenue and compete in markets with high renewables penetration. Process heat and hydrogen production will be tough early markets for fusion, but may open up to fusion as markets evolve and if fusion’s levelized cost of electricity falls below 50 $/MWhe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MWh}_{\mathrm {e}}$$\end{document}. Finally, we discuss potential ways for a fusion plant to increase revenue via cogeneration (e.g., desalination, direct air capture, or district heating) and to lower capital costs (e.g., by minimizing construction times and interest or by retrofitting coal plants). |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | true |
15 | ″ | schema:isPartOf | N0ab4e1e4efbf43988e266b4a7bfa8ba7 |
16 | ″ | ″ | N35d74483bff84471931f613d810585c8 |
17 | ″ | ″ | sg:journal.1136717 |
18 | ″ | schema:keywords | Recent studies |
19 | ″ | ″ | adjustment |
20 | ″ | ″ | analysis |
21 | ″ | ″ | business |
22 | ″ | ″ | capital cost |
23 | ″ | ″ | carbon pricing |
24 | ″ | ″ | cogeneration |
25 | ″ | ″ | commercial deployment |
26 | ″ | ″ | cost |
27 | ″ | ″ | cost requirements |
28 | ″ | ″ | cost targets |
29 | ″ | ″ | deployment |
30 | ″ | ″ | developers |
31 | ″ | ″ | early market |
32 | ″ | ″ | electricity |
33 | ″ | ″ | electricity market |
34 | ″ | ″ | energy |
35 | ″ | ″ | factors |
36 | ″ | ″ | findings |
37 | ″ | ″ | fusion |
38 | ″ | ″ | fusion energy |
39 | ″ | ″ | fusion plants |
40 | ″ | ″ | global electricity market |
41 | ″ | ″ | guidance |
42 | ″ | ″ | heat |
43 | ″ | ″ | high renewable penetration |
44 | ″ | ″ | hydrogen production |
45 | ″ | ″ | key findings |
46 | ″ | ″ | levelized cost |
47 | ″ | ″ | market |
48 | ″ | ″ | market prices |
49 | ″ | ″ | order |
50 | ″ | ″ | penetration |
51 | ″ | ″ | plants |
52 | ″ | ″ | possible scenarios |
53 | ″ | ″ | potential way |
54 | ″ | ″ | prices |
55 | ″ | ″ | pricing |
56 | ″ | ″ | process heat |
57 | ″ | ″ | production |
58 | ″ | ″ | renewable penetration |
59 | ″ | ″ | report |
60 | ″ | ″ | requirements |
61 | ″ | ″ | revenue |
62 | ″ | ″ | scenarios |
63 | ″ | ″ | storage |
64 | ″ | ″ | study |
65 | ″ | ″ | synthesis |
66 | ″ | ″ | target |
67 | ″ | ″ | techno-economic factors |
68 | ″ | ″ | thermal storage |
69 | ″ | ″ | today's market prices |
70 | ″ | ″ | way |
71 | ″ | schema:name | Potential Early Markets for Fusion Energy |
72 | ″ | schema:pagination | 18 |
73 | ″ | schema:productId | N811089dc7c3f4d23ae47bd1a5bd078b8 |
74 | ″ | ″ | N9ecf73ce9cbd4479b0f5fd9912f9abbb |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1139610656 |
76 | ″ | ″ | https://doi.org/10.1007/s10894-021-00306-4 |
77 | ″ | schema:sdDatePublished | 2022-05-20T07:40 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | N784b76e4d80a45e2a1fb4cc7fc92d6a5 |
80 | ″ | schema:url | https://doi.org/10.1007/s10894-021-00306-4 |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | articles |
83 | ″ | rdf:type | schema:ScholarlyArticle |
84 | N0ab4e1e4efbf43988e266b4a7bfa8ba7 | schema:issueNumber | 2 |
85 | ″ | rdf:type | schema:PublicationIssue |
86 | N278ac50f09a6413ea45bfbec132405f7 | schema:affiliation | grid-institutes:grid.452988.a |
87 | ″ | schema:familyName | Slesinski |
88 | ″ | schema:givenName | Daniel |
89 | ″ | rdf:type | schema:Person |
90 | N35d74483bff84471931f613d810585c8 | schema:volumeNumber | 40 |
91 | ″ | rdf:type | schema:PublicationVolume |
92 | N4099598b98144291a46d1f9739dd1559 | rdf:first | sg:person.013671472003.28 |
93 | ″ | rdf:rest | Ncac64f9b711649b0a759927b67caa3f5 |
94 | N784b76e4d80a45e2a1fb4cc7fc92d6a5 | schema:name | Springer Nature - SN SciGraph project |
95 | ″ | rdf:type | schema:Organization |
96 | N811089dc7c3f4d23ae47bd1a5bd078b8 | schema:name | doi |
97 | ″ | schema:value | 10.1007/s10894-021-00306-4 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N9ecf73ce9cbd4479b0f5fd9912f9abbb | schema:name | dimensions_id |
100 | ″ | schema:value | pub.1139610656 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | Ncac64f9b711649b0a759927b67caa3f5 | rdf:first | N278ac50f09a6413ea45bfbec132405f7 |
103 | ″ | rdf:rest | Ncf1180e938ed45d186d36ca478008210 |
104 | Ncf1180e938ed45d186d36ca478008210 | rdf:first | sg:person.010761706313.42 |
105 | ″ | rdf:rest | rdf:nil |
106 | anzsrc-for:14 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Economics |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:1402 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Applied Economics |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | sg:journal.1136717 | schema:issn | 0164-0313 |
113 | ″ | ″ | 1572-9591 |
114 | ″ | schema:name | Journal of Fusion Energy |
115 | ″ | schema:publisher | Springer Nature |
116 | ″ | rdf:type | schema:Periodical |
117 | sg:person.010761706313.42 | schema:affiliation | grid-institutes:grid.452988.a |
118 | ″ | schema:familyName | Hsu |
119 | ″ | schema:givenName | Scott C. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010761706313.42 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.013671472003.28 | schema:affiliation | grid-institutes:grid.452988.a |
123 | ″ | schema:familyName | Handley |
124 | ″ | schema:givenName | Malcolm C. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671472003.28 |
126 | ″ | rdf:type | schema:Person |
127 | sg:pub.10.1007/s10894-015-0034-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033130515 |
128 | ″ | ″ | https://doi.org/10.1007/s10894-015-0034-1 |
129 | ″ | rdf:type | schema:CreativeWork |
130 | sg:pub.10.1007/s10894-019-00226-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1121579074 |
131 | ″ | ″ | https://doi.org/10.1007/s10894-019-00226-4 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | sg:pub.10.1038/nclimate3369 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1091206874 |
134 | ″ | ″ | https://doi.org/10.1038/nclimate3369 |
135 | ″ | rdf:type | schema:CreativeWork |
136 | sg:pub.10.1038/s41467-020-20437-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1134551743 |
137 | ″ | ″ | https://doi.org/10.1038/s41467-020-20437-0 |
138 | ″ | rdf:type | schema:CreativeWork |
139 | sg:pub.10.1038/s41545-019-0039-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1120019866 |
140 | ″ | ″ | https://doi.org/10.1038/s41545-019-0039-9 |
141 | ″ | rdf:type | schema:CreativeWork |
142 | grid-institutes:grid.452988.a | schema:alternateName | Advanced Research Projects Agency–Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA |
143 | ″ | schema:name | Advanced Research Projects Agency–Energy (ARPA-E), U.S. Department of Energy, DC 20585, Washington, USA |
144 | ″ | rdf:type | schema:Organization |