Effects of Micro-turbulence on the Removal of Helium Ash in Deuterium–Tritium Plasmas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-04-11

AUTHORS

Weixin Guo, Mingzhu Zhang

ABSTRACT

Avoiding the accumulation of helium ash in the plasma core is a critical issue for future fusion reactors such as International Thermonuclear Experimental Reactor and China Fusion Engineering Test Reactor. The effects of micro-turbulence, including ion temperature gradient (ITG), parallel velocity shear (PVS) and collisionless trapped electron mode (CTEM) turbulence, on the removal of helium ash are briefly reviewed. We study how helium ash affects ITG and PVS instabilities based on our previous theoretical works, and compare the corresponding results with CTEM instability. The parametric dependence of ash flux is illustrated by calculating the turbulent flux and the corresponding transport coefficients. It indicates that long wavelength electrostatic micro-turbulence is favorable for removing helium ash, especially when its density profile is steeper than that of electrons. The outward flux of helium ash becomes larger for the temperature of helium ash being slightly higher than that of background plasmas (Tz>Te=Ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{z}>{T}_{e}={T}_{i}$$\end{document}). Isotopic effects are favorable (unfavorable) for exhausting helium ash through PVS and CTEM (ITG) turbulence. In addition, the ambipolarity of turbulent transport fluxes between electrons, ions and helium ash is self-consistently verified, and its implication on the simultaneous transport of both helium ash and D–T ions is discussed. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10894-021-00303-7

DOI

http://dx.doi.org/10.1007/s10894-021-00303-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1137128233


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Weixin", 
        "id": "sg:person.010321235021.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010321235021.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Mingzhu", 
        "id": "sg:person.015271577111.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271577111.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-04-11", 
    "datePublishedReg": "2021-04-11", 
    "description": "Avoiding the accumulation of helium ash in the plasma core is a critical issue for future fusion reactors such as International Thermonuclear Experimental Reactor and China Fusion Engineering Test Reactor. The effects of micro-turbulence, including ion temperature gradient (ITG), parallel velocity shear (PVS) and collisionless trapped electron mode (CTEM) turbulence, on the removal of helium ash are briefly reviewed. We study how helium ash affects ITG and PVS instabilities based on our previous theoretical works, and compare the corresponding results with CTEM instability. The parametric dependence of ash flux is illustrated by calculating the turbulent flux and the corresponding transport coefficients. It indicates that long wavelength electrostatic micro-turbulence is favorable for removing helium ash, especially when its density profile is steeper than that of electrons. The outward flux of helium ash becomes larger for the temperature of helium ash being slightly higher than that of background plasmas (Tz>Te=Ti\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${T}_{z}>{T}_{e}={T}_{i}$$\\end{document}). Isotopic effects are favorable (unfavorable) for exhausting helium ash through PVS and CTEM (ITG) turbulence. In addition, the ambipolarity of turbulent transport fluxes between electrons, ions and helium ash is self-consistently verified, and its implication on the simultaneous transport of both helium ash and D\u2013T ions is discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10894-021-00303-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8129325", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8897498", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8930605", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136717", 
        "issn": [
          "0164-0313", 
          "1572-9591"
        ], 
        "name": "Journal of Fusion Energy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "ion temperature gradient", 
      "parallel velocity shear", 
      "helium ash", 
      "electron mode turbulence", 
      "deuterium-tritium plasmas", 
      "International Thermonuclear Experimental Reactor", 
      "Thermonuclear Experimental Reactor", 
      "future fusion reactors", 
      "CTEM instability", 
      "CTEM turbulence", 
      "background plasma", 
      "plasma core", 
      "mode turbulence", 
      "China Fusion Engineering Test Reactor", 
      "Fusion Engineering Test Reactor", 
      "turbulent transport fluxes", 
      "micro turbulence", 
      "corresponding transport coefficients", 
      "Engineering Test Reactor", 
      "density profiles", 
      "fusion reactors", 
      "Experimental Reactor", 
      "previous theoretical work", 
      "longer wavelengths", 
      "T ions", 
      "velocity shear", 
      "transport coefficients", 
      "outward flux", 
      "parametric dependence", 
      "isotopic effect", 
      "electrons", 
      "Test Reactor", 
      "turbulent fluxes", 
      "theoretical work", 
      "temperature gradient", 
      "plasma", 
      "reactor", 
      "ions", 
      "turbulence", 
      "transport flux", 
      "ash flux", 
      "simultaneous transport", 
      "ash", 
      "flux", 
      "collisionless", 
      "wavelength", 
      "ambipolarity", 
      "instability", 
      "critical issue", 
      "dependence", 
      "shear", 
      "removal", 
      "corresponding results", 
      "temperature", 
      "transport", 
      "coefficient", 
      "core", 
      "gradient", 
      "effect", 
      "work", 
      "profile", 
      "results", 
      "self", 
      "addition", 
      "issues", 
      "accumulation", 
      "implications"
    ], 
    "name": "Effects of Micro-turbulence on the Removal of Helium Ash in Deuterium\u2013Tritium Plasmas", 
    "pagination": "8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1137128233"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10894-021-00303-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10894-021-00303-7", 
      "https://app.dimensions.ai/details/publication/pub.1137128233"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_874.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10894-021-00303-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00303-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00303-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00303-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10894-021-00303-7'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      94 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10894-021-00303-7 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:09
4 anzsrc-for:0915
5 schema:author N2386145fa609472693ce13f1a71e284d
6 schema:datePublished 2021-04-11
7 schema:datePublishedReg 2021-04-11
8 schema:description Avoiding the accumulation of helium ash in the plasma core is a critical issue for future fusion reactors such as International Thermonuclear Experimental Reactor and China Fusion Engineering Test Reactor. The effects of micro-turbulence, including ion temperature gradient (ITG), parallel velocity shear (PVS) and collisionless trapped electron mode (CTEM) turbulence, on the removal of helium ash are briefly reviewed. We study how helium ash affects ITG and PVS instabilities based on our previous theoretical works, and compare the corresponding results with CTEM instability. The parametric dependence of ash flux is illustrated by calculating the turbulent flux and the corresponding transport coefficients. It indicates that long wavelength electrostatic micro-turbulence is favorable for removing helium ash, especially when its density profile is steeper than that of electrons. The outward flux of helium ash becomes larger for the temperature of helium ash being slightly higher than that of background plasmas (Tz>Te=Ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{z}>{T}_{e}={T}_{i}$$\end{document}). Isotopic effects are favorable (unfavorable) for exhausting helium ash through PVS and CTEM (ITG) turbulence. In addition, the ambipolarity of turbulent transport fluxes between electrons, ions and helium ash is self-consistently verified, and its implication on the simultaneous transport of both helium ash and D–T ions is discussed.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N8872e1f166194b20b12b14164923c727
13 Ne7a3dcdf58614a819c3484359cc54d2f
14 sg:journal.1136717
15 schema:keywords CTEM instability
16 CTEM turbulence
17 China Fusion Engineering Test Reactor
18 Engineering Test Reactor
19 Experimental Reactor
20 Fusion Engineering Test Reactor
21 International Thermonuclear Experimental Reactor
22 T ions
23 Test Reactor
24 Thermonuclear Experimental Reactor
25 accumulation
26 addition
27 ambipolarity
28 ash
29 ash flux
30 background plasma
31 coefficient
32 collisionless
33 core
34 corresponding results
35 corresponding transport coefficients
36 critical issue
37 density profiles
38 dependence
39 deuterium-tritium plasmas
40 effect
41 electron mode turbulence
42 electrons
43 flux
44 fusion reactors
45 future fusion reactors
46 gradient
47 helium ash
48 implications
49 instability
50 ion temperature gradient
51 ions
52 isotopic effect
53 issues
54 longer wavelengths
55 micro turbulence
56 mode turbulence
57 outward flux
58 parallel velocity shear
59 parametric dependence
60 plasma
61 plasma core
62 previous theoretical work
63 profile
64 reactor
65 removal
66 results
67 self
68 shear
69 simultaneous transport
70 temperature
71 temperature gradient
72 theoretical work
73 transport
74 transport coefficients
75 transport flux
76 turbulence
77 turbulent fluxes
78 turbulent transport fluxes
79 velocity shear
80 wavelength
81 work
82 schema:name Effects of Micro-turbulence on the Removal of Helium Ash in Deuterium–Tritium Plasmas
83 schema:pagination 8
84 schema:productId N65cbcc9ebd7c47cba3388bf3fb5993aa
85 Ne420d3a344774825b94535cfdfca3551
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137128233
87 https://doi.org/10.1007/s10894-021-00303-7
88 schema:sdDatePublished 2022-05-20T07:37
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N2c3c6d7762854ed4b4c322bca6956012
91 schema:url https://doi.org/10.1007/s10894-021-00303-7
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N2386145fa609472693ce13f1a71e284d rdf:first sg:person.010321235021.99
96 rdf:rest N6d4db49683524dcba5db102e5d745c4d
97 N2c3c6d7762854ed4b4c322bca6956012 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N65cbcc9ebd7c47cba3388bf3fb5993aa schema:name doi
100 schema:value 10.1007/s10894-021-00303-7
101 rdf:type schema:PropertyValue
102 N6d4db49683524dcba5db102e5d745c4d rdf:first sg:person.015271577111.65
103 rdf:rest rdf:nil
104 N8872e1f166194b20b12b14164923c727 schema:volumeNumber 40
105 rdf:type schema:PublicationVolume
106 Ne420d3a344774825b94535cfdfca3551 schema:name dimensions_id
107 schema:value pub.1137128233
108 rdf:type schema:PropertyValue
109 Ne7a3dcdf58614a819c3484359cc54d2f schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
115 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
116 rdf:type schema:DefinedTerm
117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
118 schema:name Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
121 schema:name Interdisciplinary Engineering
122 rdf:type schema:DefinedTerm
123 sg:grant.8129325 http://pending.schema.org/fundedItem sg:pub.10.1007/s10894-021-00303-7
124 rdf:type schema:MonetaryGrant
125 sg:grant.8897498 http://pending.schema.org/fundedItem sg:pub.10.1007/s10894-021-00303-7
126 rdf:type schema:MonetaryGrant
127 sg:grant.8930605 http://pending.schema.org/fundedItem sg:pub.10.1007/s10894-021-00303-7
128 rdf:type schema:MonetaryGrant
129 sg:journal.1136717 schema:issn 0164-0313
130 1572-9591
131 schema:name Journal of Fusion Energy
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.010321235021.99 schema:affiliation grid-institutes:grid.33199.31
135 schema:familyName Guo
136 schema:givenName Weixin
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010321235021.99
138 rdf:type schema:Person
139 sg:person.015271577111.65 schema:affiliation grid-institutes:grid.33199.31
140 schema:familyName Zhang
141 schema:givenName Mingzhu
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271577111.65
143 rdf:type schema:Person
144 grid-institutes:grid.33199.31 schema:alternateName International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People’s Republic of China
145 School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, People’s Republic of China
146 schema:name International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People’s Republic of China
147 School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, People’s Republic of China
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...