Three Game Changing Discoveries: A Simpler Fusion Concept? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02

AUTHORS

Thomas C. Simonen

ABSTRACT

This paper encourages exploration of a broad range of magnetic fusion concepts in parallel with mainline tokamak development. Such exploration will certainly lead to increased understanding of fusion science and possibly to an attractive fusion energy concept. As an example, this paper describes three discoveries which greatly increase the attractiveness of the magnetic mirror plasma confinement concept. The mirror concept is thought to have three unattractive characteristics. The magnets are complex, the plasma is plagued with micro-instabilities and the electron temperature would never approach required keV levels. Persistent research on the gas dynamic trap device at the Budker Institute of Nuclear Physics in Russia and elsewhere have overcome these three deficiencies. Stable high energy density plasma can be confined with simple circular magnets, micro-instabilities can be tamed, and electron temperatures reaching a keV have been measured. These three accomplishments provide a basis to reconsider the mirror concept as a neutron source for medical applications, fusion materials development, nuclear fuel production, and fusion energy production. More... »

PAGES

63-68

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10894-015-0017-2

DOI

http://dx.doi.org/10.1007/s10894-015-0017-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019862314


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "University of California, Berkeley, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simonen", 
        "givenName": "Thomas C.", 
        "id": "sg:person.015705372031.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015705372031.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0920-3796(00)00164-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002545954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anucene.2007.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004830937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0741-3335/55/6/063001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009855468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021870631838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034369552", 
          "https://doi.org/10.1023/a:1021870631838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.205001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050168177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.205001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050168177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1761740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057816797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1880013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057830087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3624763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057987202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.864605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058117797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1988v031n04abeh005747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058171732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0029-5515/12/6/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058981929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0029-5515/20/5/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058983070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0029-5515/27/10/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058984126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0029-5515/30/9/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058984912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0029-5515/53/6/063002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058989539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0029-5515/55/5/053009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058990091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0032-1028/15/6/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059032613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.49.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.49.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1981.12108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061444834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tps.1984.4316306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061762953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst10-a9499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091169685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst11-a11568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091169716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst11-a11568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091169716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst11-a11569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091169717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst11-a11569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091169717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4706890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098540685"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02", 
    "datePublishedReg": "2016-02-01", 
    "description": "This paper encourages exploration of a broad range of magnetic fusion concepts in parallel with mainline tokamak development. Such exploration will certainly lead to increased understanding of fusion science and possibly to an attractive fusion energy concept. As an example, this paper describes three discoveries which greatly increase the attractiveness of the magnetic mirror plasma confinement concept. The mirror concept is thought to have three unattractive characteristics. The magnets are complex, the plasma is plagued with micro-instabilities and the electron temperature would never approach required keV levels. Persistent research on the gas dynamic trap device at the Budker Institute of Nuclear Physics in Russia and elsewhere have overcome these three deficiencies. Stable high energy density plasma can be confined with simple circular magnets, micro-instabilities can be tamed, and electron temperatures reaching a keV have been measured. These three accomplishments provide a basis to reconsider the mirror concept as a neutron source for medical applications, fusion materials development, nuclear fuel production, and fusion energy production.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10894-015-0017-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136717", 
        "issn": [
          "0164-0313", 
          "1572-9591"
        ], 
        "name": "Journal of Fusion Energy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Three Game Changing Discoveries: A Simpler Fusion Concept?", 
    "pagination": "63-68", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ea27b2616c4f7f7f2b308c9f2c7614ff58476872244ea091a56992c99a92938"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10894-015-0017-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019862314"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10894-015-0017-2", 
      "https://app.dimensions.ai/details/publication/pub.1019862314"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10894-015-0017-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10894-015-0017-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10894-015-0017-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10894-015-0017-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10894-015-0017-2'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10894-015-0017-2 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N211554c254b14b08a8a0cdfb9901bc60
4 schema:citation sg:pub.10.1023/a:1021870631838
5 https://doi.org/10.1016/j.anucene.2007.12.012
6 https://doi.org/10.1016/s0920-3796(00)00164-2
7 https://doi.org/10.1063/1.1761740
8 https://doi.org/10.1063/1.1880013
9 https://doi.org/10.1063/1.3624763
10 https://doi.org/10.1063/1.4706890
11 https://doi.org/10.1063/1.864605
12 https://doi.org/10.1070/pu1988v031n04abeh005747
13 https://doi.org/10.1088/0029-5515/12/6/008
14 https://doi.org/10.1088/0029-5515/20/5/004
15 https://doi.org/10.1088/0029-5515/27/10/001
16 https://doi.org/10.1088/0029-5515/30/9/007
17 https://doi.org/10.1088/0029-5515/53/6/063002
18 https://doi.org/10.1088/0029-5515/55/5/053009
19 https://doi.org/10.1088/0032-1028/15/6/009
20 https://doi.org/10.1088/0741-3335/55/6/063001
21 https://doi.org/10.1103/physrevlett.114.205001
22 https://doi.org/10.1103/physrevlett.50.1668
23 https://doi.org/10.1103/revmodphys.49.317
24 https://doi.org/10.1109/proc.1981.12108
25 https://doi.org/10.1109/tps.1984.4316306
26 https://doi.org/10.13182/fst05-a627
27 https://doi.org/10.13182/fst10-a9499
28 https://doi.org/10.13182/fst11-a11568
29 https://doi.org/10.13182/fst11-a11569
30 schema:datePublished 2016-02
31 schema:datePublishedReg 2016-02-01
32 schema:description This paper encourages exploration of a broad range of magnetic fusion concepts in parallel with mainline tokamak development. Such exploration will certainly lead to increased understanding of fusion science and possibly to an attractive fusion energy concept. As an example, this paper describes three discoveries which greatly increase the attractiveness of the magnetic mirror plasma confinement concept. The mirror concept is thought to have three unattractive characteristics. The magnets are complex, the plasma is plagued with micro-instabilities and the electron temperature would never approach required keV levels. Persistent research on the gas dynamic trap device at the Budker Institute of Nuclear Physics in Russia and elsewhere have overcome these three deficiencies. Stable high energy density plasma can be confined with simple circular magnets, micro-instabilities can be tamed, and electron temperatures reaching a keV have been measured. These three accomplishments provide a basis to reconsider the mirror concept as a neutron source for medical applications, fusion materials development, nuclear fuel production, and fusion energy production.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N0af8d3b81378461cb20ebec98eebcd0f
37 Nc6ae06dde12d45a698eb93365f7ce1c3
38 sg:journal.1136717
39 schema:name Three Game Changing Discoveries: A Simpler Fusion Concept?
40 schema:pagination 63-68
41 schema:productId N049079b2136a4b9fbfd97c10c8d6fd63
42 N091fab7327b8482f887fab30252b4504
43 Ndd1fb3c8ef3945008402ed25bcd11281
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019862314
45 https://doi.org/10.1007/s10894-015-0017-2
46 schema:sdDatePublished 2019-04-10T17:31
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Ne701c346dfa64f3cae1ef9c54cd6970c
49 schema:url http://link.springer.com/10.1007%2Fs10894-015-0017-2
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N049079b2136a4b9fbfd97c10c8d6fd63 schema:name doi
54 schema:value 10.1007/s10894-015-0017-2
55 rdf:type schema:PropertyValue
56 N091fab7327b8482f887fab30252b4504 schema:name readcube_id
57 schema:value 5ea27b2616c4f7f7f2b308c9f2c7614ff58476872244ea091a56992c99a92938
58 rdf:type schema:PropertyValue
59 N0af8d3b81378461cb20ebec98eebcd0f schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 N211554c254b14b08a8a0cdfb9901bc60 rdf:first sg:person.015705372031.15
62 rdf:rest rdf:nil
63 Nc6ae06dde12d45a698eb93365f7ce1c3 schema:volumeNumber 35
64 rdf:type schema:PublicationVolume
65 Ndd1fb3c8ef3945008402ed25bcd11281 schema:name dimensions_id
66 schema:value pub.1019862314
67 rdf:type schema:PropertyValue
68 Ne701c346dfa64f3cae1ef9c54cd6970c schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
71 schema:name Physical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
74 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
75 rdf:type schema:DefinedTerm
76 sg:journal.1136717 schema:issn 0164-0313
77 1572-9591
78 schema:name Journal of Fusion Energy
79 rdf:type schema:Periodical
80 sg:person.015705372031.15 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
81 schema:familyName Simonen
82 schema:givenName Thomas C.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015705372031.15
84 rdf:type schema:Person
85 sg:pub.10.1023/a:1021870631838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034369552
86 https://doi.org/10.1023/a:1021870631838
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.anucene.2007.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004830937
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/s0920-3796(00)00164-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002545954
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1063/1.1761740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057816797
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1063/1.1880013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057830087
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.3624763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057987202
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.4706890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098540685
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.864605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058117797
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1070/pu1988v031n04abeh005747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058171732
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1088/0029-5515/12/6/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058981929
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1088/0029-5515/20/5/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058983070
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1088/0029-5515/27/10/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058984126
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/0029-5515/30/9/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058984912
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/0029-5515/53/6/063002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058989539
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1088/0029-5515/55/5/053009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058990091
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0032-1028/15/6/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059032613
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0741-3335/55/6/063001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009855468
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.114.205001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050168177
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.50.1668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788534
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/revmodphys.49.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838854
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/proc.1981.12108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061444834
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/tps.1984.4316306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061762953
129 rdf:type schema:CreativeWork
130 https://doi.org/10.13182/fst05-a627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091168113
131 rdf:type schema:CreativeWork
132 https://doi.org/10.13182/fst10-a9499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091169685
133 rdf:type schema:CreativeWork
134 https://doi.org/10.13182/fst11-a11568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091169716
135 rdf:type schema:CreativeWork
136 https://doi.org/10.13182/fst11-a11569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091169717
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
139 schema:name University of California, Berkeley, Berkeley, CA, USA
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...