Axisymmetric Mirror as a Driver for a Fusion–Fission Hybrid: Physics Issues View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

D. D. Ryutov, A. W. Molvik, T. C. Simonen

ABSTRACT

The axisymmetric mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of natural divertors in the form of end tanks. Operation at Q ~ 1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, and the microstability of sloshing ions. More... »

PAGES

548-552

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10894-010-9328-5

DOI

http://dx.doi.org/10.1007/s10894-010-9328-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052766394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, 94551, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryutov", 
        "givenName": "D. D.", 
        "id": "sg:person.07663006161.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07663006161.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, 94551, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molvik", 
        "givenName": "A. W.", 
        "id": "sg:person.01323575705.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323575705.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, 94551, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simonen", 
        "givenName": "T. C.", 
        "id": "sg:person.015705372031.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015705372031.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-3115(91)90466-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035799188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3115(91)90466-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035799188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10894-006-9059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045298396", 
          "https://doi.org/10.1007/s10894-006-9059-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1259485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046999786", 
          "https://doi.org/10.1134/1.1259485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.864671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058117863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.865076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058118268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.865202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058118393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.866219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058119407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-7784-3_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089641336", 
          "https://doi.org/10.1007/978-1-4615-7784-3_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst99-a11963843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103674517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst99-a11963843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103674517"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "The axisymmetric mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of natural divertors in the form of end tanks. Operation at Q ~ 1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, and the microstability of sloshing ions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10894-010-9328-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136717", 
        "issn": [
          "0164-0313", 
          "1572-9591"
        ], 
        "name": "Journal of Fusion Energy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Axisymmetric Mirror as a Driver for a Fusion\u2013Fission Hybrid: Physics Issues", 
    "pagination": "548-552", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb57cf3f54dca78c885e33d41cd69ce10d398b286aa8f37b1ef24a6df096cd6d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10894-010-9328-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052766394"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10894-010-9328-5", 
      "https://app.dimensions.ai/details/publication/pub.1052766394"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43229_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10894-010-9328-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10894-010-9328-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10894-010-9328-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10894-010-9328-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10894-010-9328-5'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10894-010-9328-5 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Na5f48ec4fdaf45a1bdd03132a8de0243
4 schema:citation sg:pub.10.1007/978-1-4615-7784-3_2
5 sg:pub.10.1007/s10894-006-9059-9
6 sg:pub.10.1134/1.1259485
7 https://doi.org/10.1016/0022-3115(91)90466-k
8 https://doi.org/10.1063/1.864671
9 https://doi.org/10.1063/1.865076
10 https://doi.org/10.1063/1.865202
11 https://doi.org/10.1063/1.866219
12 https://doi.org/10.1103/physrevlett.50.1668
13 https://doi.org/10.13182/fst05-a627
14 https://doi.org/10.13182/fst99-a11963843
15 schema:datePublished 2010-12
16 schema:datePublishedReg 2010-12-01
17 schema:description The axisymmetric mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of natural divertors in the form of end tanks. Operation at Q ~ 1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, and the microstability of sloshing ions.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N6bd16b1aa97947938088288d7dfb46f5
22 Ne014902d7eb84cfaa2fa1fc5d71c86ed
23 sg:journal.1136717
24 schema:name Axisymmetric Mirror as a Driver for a Fusion–Fission Hybrid: Physics Issues
25 schema:pagination 548-552
26 schema:productId N09839f542dbe422d9c3521dbf9d35607
27 N0cb9b3de4cac405d816c198dbfcc0202
28 Na31ba7a904314f8898a4d64671171fa6
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052766394
30 https://doi.org/10.1007/s10894-010-9328-5
31 schema:sdDatePublished 2019-04-11T10:52
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Na292e6896d754e6899366fdf24d927be
34 schema:url http://link.springer.com/10.1007%2Fs10894-010-9328-5
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N09839f542dbe422d9c3521dbf9d35607 schema:name doi
39 schema:value 10.1007/s10894-010-9328-5
40 rdf:type schema:PropertyValue
41 N0cb9b3de4cac405d816c198dbfcc0202 schema:name dimensions_id
42 schema:value pub.1052766394
43 rdf:type schema:PropertyValue
44 N6bd16b1aa97947938088288d7dfb46f5 schema:volumeNumber 29
45 rdf:type schema:PublicationVolume
46 N82c6ef616f374ba8b0479fdf4ff22580 rdf:first sg:person.01323575705.78
47 rdf:rest N9922021682844f0c9a5b04407e022b47
48 N9922021682844f0c9a5b04407e022b47 rdf:first sg:person.015705372031.15
49 rdf:rest rdf:nil
50 Na292e6896d754e6899366fdf24d927be schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Na31ba7a904314f8898a4d64671171fa6 schema:name readcube_id
53 schema:value fb57cf3f54dca78c885e33d41cd69ce10d398b286aa8f37b1ef24a6df096cd6d
54 rdf:type schema:PropertyValue
55 Na5f48ec4fdaf45a1bdd03132a8de0243 rdf:first sg:person.07663006161.57
56 rdf:rest N82c6ef616f374ba8b0479fdf4ff22580
57 Ne014902d7eb84cfaa2fa1fc5d71c86ed schema:issueNumber 6
58 rdf:type schema:PublicationIssue
59 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
60 schema:name Physical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
63 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136717 schema:issn 0164-0313
66 1572-9591
67 schema:name Journal of Fusion Energy
68 rdf:type schema:Periodical
69 sg:person.01323575705.78 schema:affiliation https://www.grid.ac/institutes/grid.250008.f
70 schema:familyName Molvik
71 schema:givenName A. W.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323575705.78
73 rdf:type schema:Person
74 sg:person.015705372031.15 schema:affiliation https://www.grid.ac/institutes/grid.250008.f
75 schema:familyName Simonen
76 schema:givenName T. C.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015705372031.15
78 rdf:type schema:Person
79 sg:person.07663006161.57 schema:affiliation https://www.grid.ac/institutes/grid.250008.f
80 schema:familyName Ryutov
81 schema:givenName D. D.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07663006161.57
83 rdf:type schema:Person
84 sg:pub.10.1007/978-1-4615-7784-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089641336
85 https://doi.org/10.1007/978-1-4615-7784-3_2
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10894-006-9059-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045298396
88 https://doi.org/10.1007/s10894-006-9059-9
89 rdf:type schema:CreativeWork
90 sg:pub.10.1134/1.1259485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046999786
91 https://doi.org/10.1134/1.1259485
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0022-3115(91)90466-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1035799188
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.864671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058117863
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.865076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058118268
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.865202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058118393
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.866219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058119407
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevlett.50.1668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788534
104 rdf:type schema:CreativeWork
105 https://doi.org/10.13182/fst05-a627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091168113
106 rdf:type schema:CreativeWork
107 https://doi.org/10.13182/fst99-a11963843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103674517
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.250008.f schema:alternateName Lawrence Livermore National Laboratory
110 schema:name Lawrence Livermore National Laboratory, 94551, Livermore, CA, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...