Analysis of Thermal Performance, Efficiency, and Effectiveness of a Straight Porous Fin with Variable Thermal Conductivity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03

AUTHORS

Babitha, K. R. Madhurab

ABSTRACT

Radiating extended surfaces are generally used to reinforce heat transfer between a primary surface and its environment. Specifically, if great temperature contrasts are taken into account, variable thermal conductivity materially affects the performance of the system. Thus the present numerical study is concerned with the thermal performance of a straight porous fi n under the influence of temperature-dependent thermal conductivity, magnetic field, and radiation. The heat transfer model, which includes the Darcy law for simulating flow with solid–fluid interactions in a porous medium, the Rosseland approximation for heat transfer through radiation, the Maxwell equations for the magnetic field effect, and linearly varying temperature-dependent thermal conductivity, results in a highly nonlinear ordinary differential equation solved with using the finite-difference scheme with suitable boundary conditions. The obtained solutions are interpreted physically by considering the impact of relevant nondimensional parameters on the thermal performance, efficiency, and effectiveness of the system. It follows from the analysis that the temperature-dependent thermal conductivity improves these characteristics. More... »

PAGES

392-401

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z

DOI

http://dx.doi.org/10.1007/s10891-022-02493-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146949505


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Presidency University, 560064, Bangalore, Karnataka, India", 
          "id": "http://www.grid.ac/institutes/grid.412537.6", 
          "name": [
            "Department of Mathematics, Presidency University, 560064, Bangalore, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Babitha", 
        "id": "sg:person.014326476375.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326476375.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Trans-Disciplinary Research Centre, National Degree College, Basavanagudi and Florida International University, Miami, USA", 
          "id": "http://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Post Graduate Department of Mathematics, National College, 560070, Bangalore, Karnataka, India", 
            "Trans-Disciplinary Research Centre, National Degree College, Basavanagudi and Florida International University, Miami, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Madhurab", 
        "givenName": "K. R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13369-013-0581-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015884011", 
          "https://doi.org/10.1007/s13369-013-0581-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-010-9556-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005018313", 
          "https://doi.org/10.1007/s11242-010-9556-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10665-011-9528-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052444215", 
          "https://doi.org/10.1007/s10665-011-9528-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03", 
    "datePublishedReg": "2022-03-01", 
    "description": "Radiating extended surfaces are generally used to reinforce heat transfer between a primary surface and its environment. Specifically, if great temperature contrasts are taken into account, variable thermal conductivity materially affects the performance of the system. Thus the present numerical study is concerned with the thermal performance of a straight porous fi n under the influence of temperature-dependent thermal conductivity, magnetic field, and radiation. The heat transfer model, which includes the Darcy law for simulating flow with solid\u2013fluid interactions in a porous medium, the Rosseland approximation for heat transfer through radiation, the Maxwell equations for the magnetic field effect, and linearly varying temperature-dependent thermal conductivity, results in a highly nonlinear ordinary differential equation solved with using the finite-difference scheme with suitable boundary conditions. The obtained solutions are interpreted physically by considering the impact of relevant nondimensional parameters on the thermal performance, efficiency, and effectiveness of the system. It follows from the analysis that the temperature-dependent thermal conductivity improves these characteristics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10891-022-02493-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "95"
      }
    ], 
    "keywords": [
      "temperature-dependent thermal conductivity", 
      "variable thermal conductivity", 
      "thermal conductivity", 
      "thermal performance", 
      "heat transfer", 
      "heat transfer model", 
      "solid-fluid interaction", 
      "present numerical study", 
      "nonlinear ordinary differential equations", 
      "relevant nondimensional parameters", 
      "ordinary differential equations", 
      "finite difference scheme", 
      "porous fins", 
      "Rosseland approximation", 
      "suitable boundary conditions", 
      "porous media", 
      "nondimensional parameters", 
      "Darcy's law", 
      "magnetic field effects", 
      "numerical study", 
      "differential equations", 
      "extended surfaces", 
      "Maxwell's equations", 
      "conductivity", 
      "transfer model", 
      "boundary conditions", 
      "primary surface", 
      "magnetic field", 
      "field effects", 
      "temperature contrast", 
      "equations", 
      "performance", 
      "surface", 
      "efficiency", 
      "approximation", 
      "fins", 
      "transfer", 
      "flow", 
      "system", 
      "radiation", 
      "scheme", 
      "parameters", 
      "effectiveness", 
      "solution", 
      "field", 
      "law", 
      "characteristics", 
      "influence", 
      "conditions", 
      "model", 
      "analysis", 
      "account", 
      "environment", 
      "effect", 
      "medium", 
      "impact", 
      "interaction", 
      "study", 
      "contrast"
    ], 
    "name": "Analysis of Thermal Performance, Efficiency, and Effectiveness of a Straight Porous Fin with Variable Thermal Conductivity", 
    "pagination": "392-401", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146949505"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-022-02493-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-022-02493-z", 
      "https://app.dimensions.ai/details/publication/pub.1146949505"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_931.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10891-022-02493-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      88 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-022-02493-z schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd4ad30a85da54eebb546ad42173b312c
4 schema:citation sg:pub.10.1007/s10665-011-9528-7
5 sg:pub.10.1007/s11242-010-9556-1
6 sg:pub.10.1007/s13369-013-0581-6
7 schema:datePublished 2022-03
8 schema:datePublishedReg 2022-03-01
9 schema:description Radiating extended surfaces are generally used to reinforce heat transfer between a primary surface and its environment. Specifically, if great temperature contrasts are taken into account, variable thermal conductivity materially affects the performance of the system. Thus the present numerical study is concerned with the thermal performance of a straight porous fi n under the influence of temperature-dependent thermal conductivity, magnetic field, and radiation. The heat transfer model, which includes the Darcy law for simulating flow with solid–fluid interactions in a porous medium, the Rosseland approximation for heat transfer through radiation, the Maxwell equations for the magnetic field effect, and linearly varying temperature-dependent thermal conductivity, results in a highly nonlinear ordinary differential equation solved with using the finite-difference scheme with suitable boundary conditions. The obtained solutions are interpreted physically by considering the impact of relevant nondimensional parameters on the thermal performance, efficiency, and effectiveness of the system. It follows from the analysis that the temperature-dependent thermal conductivity improves these characteristics.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N2288297b392b4fee8c766c4e5acc02d2
14 Ncaee104de5104df394af69098ac6c33c
15 sg:journal.1313809
16 schema:keywords Darcy's law
17 Maxwell's equations
18 Rosseland approximation
19 account
20 analysis
21 approximation
22 boundary conditions
23 characteristics
24 conditions
25 conductivity
26 contrast
27 differential equations
28 effect
29 effectiveness
30 efficiency
31 environment
32 equations
33 extended surfaces
34 field
35 field effects
36 finite difference scheme
37 fins
38 flow
39 heat transfer
40 heat transfer model
41 impact
42 influence
43 interaction
44 law
45 magnetic field
46 magnetic field effects
47 medium
48 model
49 nondimensional parameters
50 nonlinear ordinary differential equations
51 numerical study
52 ordinary differential equations
53 parameters
54 performance
55 porous fins
56 porous media
57 present numerical study
58 primary surface
59 radiation
60 relevant nondimensional parameters
61 scheme
62 solid-fluid interaction
63 solution
64 study
65 suitable boundary conditions
66 surface
67 system
68 temperature contrast
69 temperature-dependent thermal conductivity
70 thermal conductivity
71 thermal performance
72 transfer
73 transfer model
74 variable thermal conductivity
75 schema:name Analysis of Thermal Performance, Efficiency, and Effectiveness of a Straight Porous Fin with Variable Thermal Conductivity
76 schema:pagination 392-401
77 schema:productId N2f575656c8c14490ab3ff5a2bba1b5b8
78 Nf09bc7e44d3645b3b8c58f55ad6edca5
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146949505
80 https://doi.org/10.1007/s10891-022-02493-z
81 schema:sdDatePublished 2022-06-01T22:23
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Na2d8f8cc401b4739b7fd5c5d655131a3
84 schema:url https://doi.org/10.1007/s10891-022-02493-z
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N2288297b392b4fee8c766c4e5acc02d2 schema:volumeNumber 95
89 rdf:type schema:PublicationVolume
90 N2f575656c8c14490ab3ff5a2bba1b5b8 schema:name dimensions_id
91 schema:value pub.1146949505
92 rdf:type schema:PropertyValue
93 N5348c23a916b480b9760ce9621f74563 rdf:first N92bb7fbb2a1242bd93a35528538b2d8e
94 rdf:rest rdf:nil
95 N92bb7fbb2a1242bd93a35528538b2d8e schema:affiliation grid-institutes:grid.65456.34
96 schema:familyName Madhurab
97 schema:givenName K. R.
98 rdf:type schema:Person
99 Na2d8f8cc401b4739b7fd5c5d655131a3 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Ncaee104de5104df394af69098ac6c33c schema:issueNumber 2
102 rdf:type schema:PublicationIssue
103 Nd4ad30a85da54eebb546ad42173b312c rdf:first sg:person.014326476375.94
104 rdf:rest N5348c23a916b480b9760ce9621f74563
105 Nf09bc7e44d3645b3b8c58f55ad6edca5 schema:name doi
106 schema:value 10.1007/s10891-022-02493-z
107 rdf:type schema:PropertyValue
108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
109 schema:name Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
112 schema:name Interdisciplinary Engineering
113 rdf:type schema:DefinedTerm
114 sg:journal.1313809 schema:issn 1062-0125
115 1573-871X
116 schema:name Journal of Engineering Physics and Thermophysics
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.014326476375.94 schema:affiliation grid-institutes:grid.412537.6
120 schema:familyName Babitha
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326476375.94
122 rdf:type schema:Person
123 sg:pub.10.1007/s10665-011-9528-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052444215
124 https://doi.org/10.1007/s10665-011-9528-7
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11242-010-9556-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005018313
127 https://doi.org/10.1007/s11242-010-9556-1
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s13369-013-0581-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015884011
130 https://doi.org/10.1007/s13369-013-0581-6
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.412537.6 schema:alternateName Department of Mathematics, Presidency University, 560064, Bangalore, Karnataka, India
133 schema:name Department of Mathematics, Presidency University, 560064, Bangalore, Karnataka, India
134 rdf:type schema:Organization
135 grid-institutes:grid.65456.34 schema:alternateName Trans-Disciplinary Research Centre, National Degree College, Basavanagudi and Florida International University, Miami, USA
136 schema:name Post Graduate Department of Mathematics, National College, 560070, Bangalore, Karnataka, India
137 Trans-Disciplinary Research Centre, National Degree College, Basavanagudi and Florida International University, Miami, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...