Ontology type: schema:ScholarlyArticle
2022-03
AUTHORSBabitha, K. R. Madhurab
ABSTRACTRadiating extended surfaces are generally used to reinforce heat transfer between a primary surface and its environment. Specifically, if great temperature contrasts are taken into account, variable thermal conductivity materially affects the performance of the system. Thus the present numerical study is concerned with the thermal performance of a straight porous fi n under the influence of temperature-dependent thermal conductivity, magnetic field, and radiation. The heat transfer model, which includes the Darcy law for simulating flow with solid–fluid interactions in a porous medium, the Rosseland approximation for heat transfer through radiation, the Maxwell equations for the magnetic field effect, and linearly varying temperature-dependent thermal conductivity, results in a highly nonlinear ordinary differential equation solved with using the finite-difference scheme with suitable boundary conditions. The obtained solutions are interpreted physically by considering the impact of relevant nondimensional parameters on the thermal performance, efficiency, and effectiveness of the system. It follows from the analysis that the temperature-dependent thermal conductivity improves these characteristics. More... »
PAGES392-401
http://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z
DOIhttp://dx.doi.org/10.1007/s10891-022-02493-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1146949505
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Presidency University, 560064, Bangalore, Karnataka, India",
"id": "http://www.grid.ac/institutes/grid.412537.6",
"name": [
"Department of Mathematics, Presidency University, 560064, Bangalore, Karnataka, India"
],
"type": "Organization"
},
"familyName": "Babitha",
"id": "sg:person.014326476375.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326476375.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Trans-Disciplinary Research Centre, National Degree College, Basavanagudi and Florida International University, Miami, USA",
"id": "http://www.grid.ac/institutes/grid.65456.34",
"name": [
"Post Graduate Department of Mathematics, National College, 560070, Bangalore, Karnataka, India",
"Trans-Disciplinary Research Centre, National Degree College, Basavanagudi and Florida International University, Miami, USA"
],
"type": "Organization"
},
"familyName": "Madhurab",
"givenName": "K. R.",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s13369-013-0581-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015884011",
"https://doi.org/10.1007/s13369-013-0581-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11242-010-9556-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005018313",
"https://doi.org/10.1007/s11242-010-9556-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10665-011-9528-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052444215",
"https://doi.org/10.1007/s10665-011-9528-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-03",
"datePublishedReg": "2022-03-01",
"description": "Radiating extended surfaces are generally used to reinforce heat transfer between a primary surface and its environment. Specifically, if great temperature contrasts are taken into account, variable thermal conductivity materially affects the performance of the system. Thus the present numerical study is concerned with the thermal performance of a straight porous fi n under the influence of temperature-dependent thermal conductivity, magnetic field, and radiation. The heat transfer model, which includes the Darcy law for simulating flow with solid\u2013fluid interactions in a porous medium, the Rosseland approximation for heat transfer through radiation, the Maxwell equations for the magnetic field effect, and linearly varying temperature-dependent thermal conductivity, results in a highly nonlinear ordinary differential equation solved with using the finite-difference scheme with suitable boundary conditions. The obtained solutions are interpreted physically by considering the impact of relevant nondimensional parameters on the thermal performance, efficiency, and effectiveness of the system. It follows from the analysis that the temperature-dependent thermal conductivity improves these characteristics.",
"genre": "article",
"id": "sg:pub.10.1007/s10891-022-02493-z",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1313809",
"issn": [
"1062-0125",
"1573-871X"
],
"name": "Journal of Engineering Physics and Thermophysics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "95"
}
],
"keywords": [
"temperature-dependent thermal conductivity",
"variable thermal conductivity",
"thermal conductivity",
"thermal performance",
"heat transfer",
"heat transfer model",
"solid-fluid interaction",
"present numerical study",
"nonlinear ordinary differential equations",
"relevant nondimensional parameters",
"ordinary differential equations",
"finite difference scheme",
"porous fins",
"Rosseland approximation",
"suitable boundary conditions",
"porous media",
"nondimensional parameters",
"Darcy's law",
"magnetic field effects",
"numerical study",
"differential equations",
"extended surfaces",
"Maxwell's equations",
"conductivity",
"transfer model",
"boundary conditions",
"primary surface",
"magnetic field",
"field effects",
"temperature contrast",
"equations",
"performance",
"surface",
"efficiency",
"approximation",
"fins",
"transfer",
"flow",
"system",
"radiation",
"scheme",
"parameters",
"effectiveness",
"solution",
"field",
"law",
"characteristics",
"influence",
"conditions",
"model",
"analysis",
"account",
"environment",
"effect",
"medium",
"impact",
"interaction",
"study",
"contrast"
],
"name": "Analysis of Thermal Performance, Efficiency, and Effectiveness of a Straight Porous Fin with Variable Thermal Conductivity",
"pagination": "392-401",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1146949505"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10891-022-02493-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10891-022-02493-z",
"https://app.dimensions.ai/details/publication/pub.1146949505"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_931.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10891-022-02493-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-022-02493-z'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
22 PREDICATES
88 URIs
77 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10891-022-02493-z | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | Nd4ad30a85da54eebb546ad42173b312c |
4 | ″ | schema:citation | sg:pub.10.1007/s10665-011-9528-7 |
5 | ″ | ″ | sg:pub.10.1007/s11242-010-9556-1 |
6 | ″ | ″ | sg:pub.10.1007/s13369-013-0581-6 |
7 | ″ | schema:datePublished | 2022-03 |
8 | ″ | schema:datePublishedReg | 2022-03-01 |
9 | ″ | schema:description | Radiating extended surfaces are generally used to reinforce heat transfer between a primary surface and its environment. Specifically, if great temperature contrasts are taken into account, variable thermal conductivity materially affects the performance of the system. Thus the present numerical study is concerned with the thermal performance of a straight porous fi n under the influence of temperature-dependent thermal conductivity, magnetic field, and radiation. The heat transfer model, which includes the Darcy law for simulating flow with solid–fluid interactions in a porous medium, the Rosseland approximation for heat transfer through radiation, the Maxwell equations for the magnetic field effect, and linearly varying temperature-dependent thermal conductivity, results in a highly nonlinear ordinary differential equation solved with using the finite-difference scheme with suitable boundary conditions. The obtained solutions are interpreted physically by considering the impact of relevant nondimensional parameters on the thermal performance, efficiency, and effectiveness of the system. It follows from the analysis that the temperature-dependent thermal conductivity improves these characteristics. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N2288297b392b4fee8c766c4e5acc02d2 |
14 | ″ | ″ | Ncaee104de5104df394af69098ac6c33c |
15 | ″ | ″ | sg:journal.1313809 |
16 | ″ | schema:keywords | Darcy's law |
17 | ″ | ″ | Maxwell's equations |
18 | ″ | ″ | Rosseland approximation |
19 | ″ | ″ | account |
20 | ″ | ″ | analysis |
21 | ″ | ″ | approximation |
22 | ″ | ″ | boundary conditions |
23 | ″ | ″ | characteristics |
24 | ″ | ″ | conditions |
25 | ″ | ″ | conductivity |
26 | ″ | ″ | contrast |
27 | ″ | ″ | differential equations |
28 | ″ | ″ | effect |
29 | ″ | ″ | effectiveness |
30 | ″ | ″ | efficiency |
31 | ″ | ″ | environment |
32 | ″ | ″ | equations |
33 | ″ | ″ | extended surfaces |
34 | ″ | ″ | field |
35 | ″ | ″ | field effects |
36 | ″ | ″ | finite difference scheme |
37 | ″ | ″ | fins |
38 | ″ | ″ | flow |
39 | ″ | ″ | heat transfer |
40 | ″ | ″ | heat transfer model |
41 | ″ | ″ | impact |
42 | ″ | ″ | influence |
43 | ″ | ″ | interaction |
44 | ″ | ″ | law |
45 | ″ | ″ | magnetic field |
46 | ″ | ″ | magnetic field effects |
47 | ″ | ″ | medium |
48 | ″ | ″ | model |
49 | ″ | ″ | nondimensional parameters |
50 | ″ | ″ | nonlinear ordinary differential equations |
51 | ″ | ″ | numerical study |
52 | ″ | ″ | ordinary differential equations |
53 | ″ | ″ | parameters |
54 | ″ | ″ | performance |
55 | ″ | ″ | porous fins |
56 | ″ | ″ | porous media |
57 | ″ | ″ | present numerical study |
58 | ″ | ″ | primary surface |
59 | ″ | ″ | radiation |
60 | ″ | ″ | relevant nondimensional parameters |
61 | ″ | ″ | scheme |
62 | ″ | ″ | solid-fluid interaction |
63 | ″ | ″ | solution |
64 | ″ | ″ | study |
65 | ″ | ″ | suitable boundary conditions |
66 | ″ | ″ | surface |
67 | ″ | ″ | system |
68 | ″ | ″ | temperature contrast |
69 | ″ | ″ | temperature-dependent thermal conductivity |
70 | ″ | ″ | thermal conductivity |
71 | ″ | ″ | thermal performance |
72 | ″ | ″ | transfer |
73 | ″ | ″ | transfer model |
74 | ″ | ″ | variable thermal conductivity |
75 | ″ | schema:name | Analysis of Thermal Performance, Efficiency, and Effectiveness of a Straight Porous Fin with Variable Thermal Conductivity |
76 | ″ | schema:pagination | 392-401 |
77 | ″ | schema:productId | N2f575656c8c14490ab3ff5a2bba1b5b8 |
78 | ″ | ″ | Nf09bc7e44d3645b3b8c58f55ad6edca5 |
79 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1146949505 |
80 | ″ | ″ | https://doi.org/10.1007/s10891-022-02493-z |
81 | ″ | schema:sdDatePublished | 2022-06-01T22:23 |
82 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
83 | ″ | schema:sdPublisher | Na2d8f8cc401b4739b7fd5c5d655131a3 |
84 | ″ | schema:url | https://doi.org/10.1007/s10891-022-02493-z |
85 | ″ | sgo:license | sg:explorer/license/ |
86 | ″ | sgo:sdDataset | articles |
87 | ″ | rdf:type | schema:ScholarlyArticle |
88 | N2288297b392b4fee8c766c4e5acc02d2 | schema:volumeNumber | 95 |
89 | ″ | rdf:type | schema:PublicationVolume |
90 | N2f575656c8c14490ab3ff5a2bba1b5b8 | schema:name | dimensions_id |
91 | ″ | schema:value | pub.1146949505 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | N5348c23a916b480b9760ce9621f74563 | rdf:first | N92bb7fbb2a1242bd93a35528538b2d8e |
94 | ″ | rdf:rest | rdf:nil |
95 | N92bb7fbb2a1242bd93a35528538b2d8e | schema:affiliation | grid-institutes:grid.65456.34 |
96 | ″ | schema:familyName | Madhurab |
97 | ″ | schema:givenName | K. R. |
98 | ″ | rdf:type | schema:Person |
99 | Na2d8f8cc401b4739b7fd5c5d655131a3 | schema:name | Springer Nature - SN SciGraph project |
100 | ″ | rdf:type | schema:Organization |
101 | Ncaee104de5104df394af69098ac6c33c | schema:issueNumber | 2 |
102 | ″ | rdf:type | schema:PublicationIssue |
103 | Nd4ad30a85da54eebb546ad42173b312c | rdf:first | sg:person.014326476375.94 |
104 | ″ | rdf:rest | N5348c23a916b480b9760ce9621f74563 |
105 | Nf09bc7e44d3645b3b8c58f55ad6edca5 | schema:name | doi |
106 | ″ | schema:value | 10.1007/s10891-022-02493-z |
107 | ″ | rdf:type | schema:PropertyValue |
108 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Engineering |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Interdisciplinary Engineering |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | sg:journal.1313809 | schema:issn | 1062-0125 |
115 | ″ | ″ | 1573-871X |
116 | ″ | schema:name | Journal of Engineering Physics and Thermophysics |
117 | ″ | schema:publisher | Springer Nature |
118 | ″ | rdf:type | schema:Periodical |
119 | sg:person.014326476375.94 | schema:affiliation | grid-institutes:grid.412537.6 |
120 | ″ | schema:familyName | Babitha |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326476375.94 |
122 | ″ | rdf:type | schema:Person |
123 | sg:pub.10.1007/s10665-011-9528-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052444215 |
124 | ″ | ″ | https://doi.org/10.1007/s10665-011-9528-7 |
125 | ″ | rdf:type | schema:CreativeWork |
126 | sg:pub.10.1007/s11242-010-9556-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005018313 |
127 | ″ | ″ | https://doi.org/10.1007/s11242-010-9556-1 |
128 | ″ | rdf:type | schema:CreativeWork |
129 | sg:pub.10.1007/s13369-013-0581-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015884011 |
130 | ″ | ″ | https://doi.org/10.1007/s13369-013-0581-6 |
131 | ″ | rdf:type | schema:CreativeWork |
132 | grid-institutes:grid.412537.6 | schema:alternateName | Department of Mathematics, Presidency University, 560064, Bangalore, Karnataka, India |
133 | ″ | schema:name | Department of Mathematics, Presidency University, 560064, Bangalore, Karnataka, India |
134 | ″ | rdf:type | schema:Organization |
135 | grid-institutes:grid.65456.34 | schema:alternateName | Trans-Disciplinary Research Centre, National Degree College, Basavanagudi and Florida International University, Miami, USA |
136 | ″ | schema:name | Post Graduate Department of Mathematics, National College, 560070, Bangalore, Karnataka, India |
137 | ″ | ″ | Trans-Disciplinary Research Centre, National Degree College, Basavanagudi and Florida International University, Miami, USA |
138 | ″ | rdf:type | schema:Organization |