Integral Transformations for the Generalized Nonstationary Heat Conduction Equation in a Limited Region View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-04

AUTHORS

É. M. Kartashov

ABSTRACT

The mathematical theory of integral transformations has been developed for finding analytical solutions of the generalized nonstationary heat conduction equation for a limited canonical-type region (infinite plate, solid cylinder, sphere) simultaneously in the Cartesian, cylindrical, and spherical coordinate systems. Improved solutions in the form of Fourier–Hankel′s series are suggested that absolutely and uniformly converge up to the boundary of the region and represent fundamentally new constructions of the analytical theory of thermal conductivity of solid bodies very convenient for conducting numerical experiments in the practical thermal physics. The Green′s function method has been developed: an integral relation is suggested for writing analytical solutions of boundary-value problems for the generalized equation of nonstationary heat conduction in terms of inhomogeneities in the equation and boundary-value conditions in the initial formulation of the problem, and the corresponding Green′s functions are presented. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-019-01905-x

DOI

http://dx.doi.org/10.1007/s10891-019-01905-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112519802


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Moscow Technologic University (Institute of Fine Chemical Technologies), 78 Vernadskii Ave., 119454, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kartashov", 
        "givenName": "\u00c9. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10891-017-1684-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092666536", 
          "https://doi.org/10.1007/s10891-017-1684-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-04", 
    "datePublishedReg": "2019-03-04", 
    "description": "The mathematical theory of integral transformations has been developed for finding analytical solutions of the generalized nonstationary heat conduction equation for a limited canonical-type region (infinite plate, solid cylinder, sphere) simultaneously in the Cartesian, cylindrical, and spherical coordinate systems. Improved solutions in the form of Fourier\u2013Hankel\u2032s series are suggested that absolutely and uniformly converge up to the boundary of the region and represent fundamentally new constructions of the analytical theory of thermal conductivity of solid bodies very convenient for conducting numerical experiments in the practical thermal physics. The Green\u2032s function method has been developed: an integral relation is suggested for writing analytical solutions of boundary-value problems for the generalized equation of nonstationary heat conduction in terms of inhomogeneities in the equation and boundary-value conditions in the initial formulation of the problem, and the corresponding Green\u2032s functions are presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10891-019-01905-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "92"
      }
    ], 
    "name": "Integral Transformations for the Generalized Nonstationary Heat Conduction Equation in a Limited Region", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e1600159736d97db6da1d08372d66d0c2f2ca853d1ec27f333574e88c77479e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-019-01905-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112519802"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-019-01905-x", 
      "https://app.dimensions.ai/details/publication/pub.1112519802"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53981_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10891-019-01905-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-019-01905-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-019-01905-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-019-01905-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-019-01905-x'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      21 PREDICATES      27 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-019-01905-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N14302674b59a4f81863ee72b4bc2bb67
4 schema:citation sg:pub.10.1007/s10891-017-1684-9
5 schema:datePublished 2019-03-04
6 schema:datePublishedReg 2019-03-04
7 schema:description The mathematical theory of integral transformations has been developed for finding analytical solutions of the generalized nonstationary heat conduction equation for a limited canonical-type region (infinite plate, solid cylinder, sphere) simultaneously in the Cartesian, cylindrical, and spherical coordinate systems. Improved solutions in the form of Fourier–Hankel′s series are suggested that absolutely and uniformly converge up to the boundary of the region and represent fundamentally new constructions of the analytical theory of thermal conductivity of solid bodies very convenient for conducting numerical experiments in the practical thermal physics. The Green′s function method has been developed: an integral relation is suggested for writing analytical solutions of boundary-value problems for the generalized equation of nonstationary heat conduction in terms of inhomogeneities in the equation and boundary-value conditions in the initial formulation of the problem, and the corresponding Green′s functions are presented.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6f89816b142942a7aa23f37cdee93aef
12 Nce154c3eca964f40b046cb5d039ab3bc
13 sg:journal.1313809
14 schema:name Integral Transformations for the Generalized Nonstationary Heat Conduction Equation in a Limited Region
15 schema:pagination 1-9
16 schema:productId N0a0b9cfaa777411f848f0508e35fbdc4
17 N90280b29b34e4257a37eb4c95337c6bd
18 Ndb03a1dd1bb54a1f86e961ed30615783
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112519802
20 https://doi.org/10.1007/s10891-019-01905-x
21 schema:sdDatePublished 2019-04-11T12:11
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Ne4ddc7e13d2b487eace54242f67961dd
24 schema:url https://link.springer.com/10.1007%2Fs10891-019-01905-x
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N0a0b9cfaa777411f848f0508e35fbdc4 schema:name doi
29 schema:value 10.1007/s10891-019-01905-x
30 rdf:type schema:PropertyValue
31 N14302674b59a4f81863ee72b4bc2bb67 rdf:first Nd4ae308f06554c9e973b74cb7a8bd366
32 rdf:rest rdf:nil
33 N2bfc411fb7fd4d3db21feea322535b85 schema:name Moscow Technologic University (Institute of Fine Chemical Technologies), 78 Vernadskii Ave., 119454, Moscow, Russia
34 rdf:type schema:Organization
35 N6f89816b142942a7aa23f37cdee93aef schema:volumeNumber 92
36 rdf:type schema:PublicationVolume
37 N90280b29b34e4257a37eb4c95337c6bd schema:name readcube_id
38 schema:value 1e1600159736d97db6da1d08372d66d0c2f2ca853d1ec27f333574e88c77479e
39 rdf:type schema:PropertyValue
40 Nce154c3eca964f40b046cb5d039ab3bc schema:issueNumber 1
41 rdf:type schema:PublicationIssue
42 Nd4ae308f06554c9e973b74cb7a8bd366 schema:affiliation N2bfc411fb7fd4d3db21feea322535b85
43 schema:familyName Kartashov
44 schema:givenName É. M.
45 rdf:type schema:Person
46 Ndb03a1dd1bb54a1f86e961ed30615783 schema:name dimensions_id
47 schema:value pub.1112519802
48 rdf:type schema:PropertyValue
49 Ne4ddc7e13d2b487eace54242f67961dd schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1313809 schema:issn 1062-0125
58 1573-871X
59 schema:name Journal of Engineering Physics and Thermophysics
60 rdf:type schema:Periodical
61 sg:pub.10.1007/s10891-017-1684-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092666536
62 https://doi.org/10.1007/s10891-017-1684-9
63 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...