Determination of the Protein Layer Thickness on the Surface of Polydisperse Nanoparticles from the Distribution of Their Concentration Along a ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-04

AUTHORS

A. Makhaniok, V. A. Goranov, V. A. Dediu

ABSTRACT

Detection of biomarkers in picomolar or subpicomolar concentrations for revealing marker proteins at the early stage of neurodegenerative diseases is an urgent problem. One of the stages of its solution is determination of the marker’s protein layer thickness adhering to the surface of magnetized nanoparticles. In this work, we present an algorithm for determining the protein layer thickness on the surface of magnetized polydisperse nanoparticles having logarithmically normal size distribution of the magnetic core, as well as the results of the analysis of the error in the determination of the thickness of this layer. The analysis is based on an analytical solution of the equation of diffusion of nanoparticles. With the aid of this solution, in the computational experiment the concentration profiles along the length of the measuring channel have been imitated at the given values of the ″measurement″ duration, protein layer thickness on the nanoparticles surface, and of the relative accidental error of ″measurements.″ It is shown that at the protein layer thickness above 10 nm the proposed technique allows one to determine this thickness with a relative error 5–10 times lower than the error of measuring their concentration. More... »

PAGES

1-10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-019-01903-z

DOI

http://dx.doi.org/10.1007/s10891-019-01903-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112519800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
          "id": "https://www.grid.ac/institutes/grid.423488.1", 
          "name": [
            "A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str, 220072, Minsk, Belarus", 
            "Biodevice Systems s.r.o., Bulharsk\u00e1 996/20, Vr\u0161ovice (Prague 10), 10100, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makhaniok", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biodevice Systems s.r.o., Bulharsk\u00e1 996/20, Vr\u0161ovice (Prague 10), 10100, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goranov", 
        "givenName": "V. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Magnetic nanostructured hybrid materials and systems, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dediu", 
        "givenName": "V. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/ceat.201100450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010165101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19440049.2012.689777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011666130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s11671-016-1391-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020051932", 
          "https://doi.org/10.1186/s11671-016-1391-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s11671-016-1391-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020051932", 
          "https://doi.org/10.1186/s11671-016-1391-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2640(200004)72:4<322::aid-cite322>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027027611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-008-9435-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036229939", 
          "https://doi.org/10.1007/s11051-008-9435-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1040573420", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-33697-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040573420", 
          "https://doi.org/10.1007/978-3-540-33697-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-33697-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040573420", 
          "https://doi.org/10.1007/978-3-540-33697-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177706645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043005266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn700144m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056226643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.061405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.061405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736031"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-04", 
    "datePublishedReg": "2019-03-04", 
    "description": "Detection of biomarkers in picomolar or subpicomolar concentrations for revealing marker proteins at the early stage of neurodegenerative diseases is an urgent problem. One of the stages of its solution is determination of the marker\u2019s protein layer thickness adhering to the surface of magnetized nanoparticles. In this work, we present an algorithm for determining the protein layer thickness on the surface of magnetized polydisperse nanoparticles having logarithmically normal size distribution of the magnetic core, as well as the results of the analysis of the error in the determination of the thickness of this layer. The analysis is based on an analytical solution of the equation of diffusion of nanoparticles. With the aid of this solution, in the computational experiment the concentration profiles along the length of the measuring channel have been imitated at the given values of the \u2033measurement\u2033 duration, protein layer thickness on the nanoparticles surface, and of the relative accidental error of \u2033measurements.\u2033 It is shown that at the protein layer thickness above 10 nm the proposed technique allows one to determine this thickness with a relative error 5\u201310 times lower than the error of measuring their concentration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10891-019-01903-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "92"
      }
    ], 
    "name": "Determination of the Protein Layer Thickness on the Surface of Polydisperse Nanoparticles from the Distribution of Their Concentration Along a Measuring Channel", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0f1fe6c3adc15f67e16e6740e1891d23e086fc6a61d164f12af8bb36afccebc3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-019-01903-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112519800"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-019-01903-z", 
      "https://app.dimensions.ai/details/publication/pub.1112519800"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53977_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10891-019-01903-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-019-01903-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-019-01903-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-019-01903-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-019-01903-z'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      36 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-019-01903-z schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N6d89c845071841c8bb6497bd7fd1fd8f
4 schema:citation sg:pub.10.1007/978-3-540-33697-6
5 sg:pub.10.1007/s11051-008-9435-7
6 sg:pub.10.1186/s11671-016-1391-z
7 https://app.dimensions.ai/details/publication/pub.1040573420
8 https://doi.org/10.1002/1522-2640(200004)72:4<322::aid-cite322>3.0.co;2-2
9 https://doi.org/10.1002/ceat.201100450
10 https://doi.org/10.1021/nn700144m
11 https://doi.org/10.1080/19440049.2012.689777
12 https://doi.org/10.1103/physreve.75.061405
13 https://doi.org/10.1214/aoms/1177706645
14 schema:datePublished 2019-03-04
15 schema:datePublishedReg 2019-03-04
16 schema:description Detection of biomarkers in picomolar or subpicomolar concentrations for revealing marker proteins at the early stage of neurodegenerative diseases is an urgent problem. One of the stages of its solution is determination of the marker’s protein layer thickness adhering to the surface of magnetized nanoparticles. In this work, we present an algorithm for determining the protein layer thickness on the surface of magnetized polydisperse nanoparticles having logarithmically normal size distribution of the magnetic core, as well as the results of the analysis of the error in the determination of the thickness of this layer. The analysis is based on an analytical solution of the equation of diffusion of nanoparticles. With the aid of this solution, in the computational experiment the concentration profiles along the length of the measuring channel have been imitated at the given values of the ″measurement″ duration, protein layer thickness on the nanoparticles surface, and of the relative accidental error of ″measurements.″ It is shown that at the protein layer thickness above 10 nm the proposed technique allows one to determine this thickness with a relative error 5–10 times lower than the error of measuring their concentration.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N5a3342ddc5eb4a2691668d1fa4e63ec7
21 Nb2648a0b11194aa295951ec7c49e4921
22 sg:journal.1313809
23 schema:name Determination of the Protein Layer Thickness on the Surface of Polydisperse Nanoparticles from the Distribution of Their Concentration Along a Measuring Channel
24 schema:pagination 1-10
25 schema:productId N4fbf58fb3ec1478299b324fb16f5e1cc
26 N5c04839d3d3241daa0371f257c62e055
27 N7b7891bebd4f4caaa0c093e55f52c34e
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112519800
29 https://doi.org/10.1007/s10891-019-01903-z
30 schema:sdDatePublished 2019-04-11T12:11
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N56d2565eeb6f4cf9a03f7391af2b4dff
33 schema:url https://link.springer.com/10.1007%2Fs10891-019-01903-z
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N1efc493e9f46413493dd738219d46be6 schema:name Biodevice Systems s.r.o., Bulharská 996/20, Vršovice (Prague 10), 10100, Prague, Czech Republic
38 rdf:type schema:Organization
39 N21099a5bbef843faaa6a11241623441a rdf:first N4ab9058bac0a479eaa3b037bd8d9109d
40 rdf:rest N2e877d322d7b4058bf56314ef09fc533
41 N2e877d322d7b4058bf56314ef09fc533 rdf:first N3261e45b032044689d88ce660a4fdebf
42 rdf:rest rdf:nil
43 N3261e45b032044689d88ce660a4fdebf schema:affiliation Nfa71fc0c67464f61ac9e413533ee2f99
44 schema:familyName Dediu
45 schema:givenName V. A.
46 rdf:type schema:Person
47 N4ab9058bac0a479eaa3b037bd8d9109d schema:affiliation N1efc493e9f46413493dd738219d46be6
48 schema:familyName Goranov
49 schema:givenName V. A.
50 rdf:type schema:Person
51 N4fbf58fb3ec1478299b324fb16f5e1cc schema:name readcube_id
52 schema:value 0f1fe6c3adc15f67e16e6740e1891d23e086fc6a61d164f12af8bb36afccebc3
53 rdf:type schema:PropertyValue
54 N56d2565eeb6f4cf9a03f7391af2b4dff schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N5a3342ddc5eb4a2691668d1fa4e63ec7 schema:volumeNumber 92
57 rdf:type schema:PublicationVolume
58 N5c04839d3d3241daa0371f257c62e055 schema:name doi
59 schema:value 10.1007/s10891-019-01903-z
60 rdf:type schema:PropertyValue
61 N6d89c845071841c8bb6497bd7fd1fd8f rdf:first Ne18fe8c95a19405682bc70b47a2f6207
62 rdf:rest N21099a5bbef843faaa6a11241623441a
63 N7b7891bebd4f4caaa0c093e55f52c34e schema:name dimensions_id
64 schema:value pub.1112519800
65 rdf:type schema:PropertyValue
66 Nb2648a0b11194aa295951ec7c49e4921 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 Ne18fe8c95a19405682bc70b47a2f6207 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
69 schema:familyName Makhaniok
70 schema:givenName A.
71 rdf:type schema:Person
72 Nfa71fc0c67464f61ac9e413533ee2f99 schema:name Magnetic nanostructured hybrid materials and systems, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy
73 rdf:type schema:Organization
74 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
75 schema:name Physical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
78 schema:name Other Physical Sciences
79 rdf:type schema:DefinedTerm
80 sg:journal.1313809 schema:issn 1062-0125
81 1573-871X
82 schema:name Journal of Engineering Physics and Thermophysics
83 rdf:type schema:Periodical
84 sg:pub.10.1007/978-3-540-33697-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040573420
85 https://doi.org/10.1007/978-3-540-33697-6
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s11051-008-9435-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036229939
88 https://doi.org/10.1007/s11051-008-9435-7
89 rdf:type schema:CreativeWork
90 sg:pub.10.1186/s11671-016-1391-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020051932
91 https://doi.org/10.1186/s11671-016-1391-z
92 rdf:type schema:CreativeWork
93 https://app.dimensions.ai/details/publication/pub.1040573420 schema:CreativeWork
94 https://doi.org/10.1002/1522-2640(200004)72:4<322::aid-cite322>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027027611
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/ceat.201100450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010165101
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1021/nn700144m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056226643
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1080/19440049.2012.689777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011666130
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physreve.75.061405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736031
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1214/aoms/1177706645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043005266
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute
107 schema:name A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str, 220072, Minsk, Belarus
108 Biodevice Systems s.r.o., Bulharská 996/20, Vršovice (Prague 10), 10100, Prague, Czech Republic
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...