Adsorption and Diffusion of Hydrogen on Low-Index (110) and (111) Surfaces of Aluminum View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-22

AUTHORS

A. L. Zaitsev, T. N. Genarova

ABSTRACT

By the density-functional method, the authors have considered the energetics of adsorption and diffusion of a hydrogen molecule into atomically thin aluminum plates with body-centered tetragonal and rhombohedral crystallite structures bounded by the (110) and (111) surfaces, and also geometric configurations of surface aluminum hydrides. It has been shown that physical adsorption of H2 molecules on the Al(110) and Al(111) surfaces is a weak exothermic process. Polarization and deformation due to the physical adsorption lead to a certain increase in the H–H interatomic spacing (0.734 Å). The diffusion of the hydrogen atoms into body-centered tetragonal and rhombohedral plates tends to increase the system's energy. It has been found that hydrogen diffuses most easily through the Al(110) surface; in atomic diffusion through the subsurface layer, the energy grows up to 1.1 eV. A stable energy state is attained due to the formation of a tetrahedral hydrogen complex. More... »

PAGES

1-14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-018-1899-4

DOI

http://dx.doi.org/10.1007/s10891-018-1899-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110128255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
          "id": "https://www.grid.ac/institutes/grid.423488.1", 
          "name": [
            "A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitsev", 
        "givenName": "A. L.", 
        "id": "sg:person.015634010364.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634010364.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
          "id": "https://www.grid.ac/institutes/grid.423488.1", 
          "name": [
            "A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Genarova", 
        "givenName": "T. N.", 
        "id": "sg:person.010766426673.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010766426673.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10891-008-0019-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005587758", 
          "https://doi.org/10.1007/s10891-008-0019-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0706613104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010007860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013611887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013611887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2009.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022497006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1965-0198670-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034421108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011832828818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048296992", 
          "https://doi.org/10.1023/a:1011832828818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic0617487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055559947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic0617487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055559947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.1993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.4958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.4958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.235403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.235403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.106102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.106102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.64.1045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.64.1045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0172.200203e.0336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071219841"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-22", 
    "datePublishedReg": "2018-11-22", 
    "description": "By the density-functional method, the authors have considered the energetics of adsorption and diffusion of a hydrogen molecule into atomically thin aluminum plates with body-centered tetragonal and rhombohedral crystallite structures bounded by the (110) and (111) surfaces, and also geometric configurations of surface aluminum hydrides. It has been shown that physical adsorption of H2 molecules on the Al(110) and Al(111) surfaces is a weak exothermic process. Polarization and deformation due to the physical adsorption lead to a certain increase in the H\u2013H interatomic spacing (0.734 \u00c5). The diffusion of the hydrogen atoms into body-centered tetragonal and rhombohedral plates tends to increase the system's energy. It has been found that hydrogen diffuses most easily through the Al(110) surface; in atomic diffusion through the subsurface layer, the energy grows up to 1.1 eV. A stable energy state is attained due to the formation of a tetrahedral hydrogen complex.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10891-018-1899-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "type": "Periodical"
      }
    ], 
    "name": "Adsorption and Diffusion of Hydrogen on Low-Index (110) and (111) Surfaces of Aluminum", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8241aa095a2feb9d01931a9ec9c6cdfb6ff028d8348504a6ebe14bd35c1f0bf5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-018-1899-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110128255"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-018-1899-4", 
      "https://app.dimensions.ai/details/publication/pub.1110128255"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000270_0000000270/records_9662_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10891-018-1899-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1899-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1899-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1899-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1899-4'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      40 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-018-1899-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N9dfd67af48f24eeb9fe47ea8a959f29c
4 schema:citation sg:pub.10.1007/s10891-008-0019-2
5 sg:pub.10.1023/a:1011832828818
6 https://doi.org/10.1016/j.cpc.2009.07.007
7 https://doi.org/10.1021/ic0617487
8 https://doi.org/10.1073/pnas.0706613104
9 https://doi.org/10.1090/s0025-5718-1965-0198670-6
10 https://doi.org/10.1103/physrevb.13.5188
11 https://doi.org/10.1103/physrevb.43.1993
12 https://doi.org/10.1103/physrevb.53.4958
13 https://doi.org/10.1103/physrevb.70.235403
14 https://doi.org/10.1103/physrevlett.45.566
15 https://doi.org/10.1103/physrevlett.82.3296
16 https://doi.org/10.1103/physrevlett.86.692
17 https://doi.org/10.1103/physrevlett.92.106102
18 https://doi.org/10.1103/revmodphys.64.1045
19 https://doi.org/10.3367/ufnr.0172.200203e.0336
20 schema:datePublished 2018-11-22
21 schema:datePublishedReg 2018-11-22
22 schema:description By the density-functional method, the authors have considered the energetics of adsorption and diffusion of a hydrogen molecule into atomically thin aluminum plates with body-centered tetragonal and rhombohedral crystallite structures bounded by the (110) and (111) surfaces, and also geometric configurations of surface aluminum hydrides. It has been shown that physical adsorption of H2 molecules on the Al(110) and Al(111) surfaces is a weak exothermic process. Polarization and deformation due to the physical adsorption lead to a certain increase in the H–H interatomic spacing (0.734 Å). The diffusion of the hydrogen atoms into body-centered tetragonal and rhombohedral plates tends to increase the system's energy. It has been found that hydrogen diffuses most easily through the Al(110) surface; in atomic diffusion through the subsurface layer, the energy grows up to 1.1 eV. A stable energy state is attained due to the formation of a tetrahedral hydrogen complex.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf sg:journal.1313809
27 schema:name Adsorption and Diffusion of Hydrogen on Low-Index (110) and (111) Surfaces of Aluminum
28 schema:pagination 1-14
29 schema:productId N2946d2a1f6ad40d187c9fcff15f842a9
30 N4062f15124664eb19a4698228f5d7a81
31 Nccf1f6677ba34a44929d284fb0c9031f
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110128255
33 https://doi.org/10.1007/s10891-018-1899-4
34 schema:sdDatePublished 2019-04-11T08:11
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nfccaef325c0f4fc0b9708ad8dffac8e5
37 schema:url https://link.springer.com/10.1007%2Fs10891-018-1899-4
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N2946d2a1f6ad40d187c9fcff15f842a9 schema:name readcube_id
42 schema:value 8241aa095a2feb9d01931a9ec9c6cdfb6ff028d8348504a6ebe14bd35c1f0bf5
43 rdf:type schema:PropertyValue
44 N4062f15124664eb19a4698228f5d7a81 schema:name dimensions_id
45 schema:value pub.1110128255
46 rdf:type schema:PropertyValue
47 N4dfa5de39c22434dba210f8162bfb73c rdf:first sg:person.010766426673.42
48 rdf:rest rdf:nil
49 N9dfd67af48f24eeb9fe47ea8a959f29c rdf:first sg:person.015634010364.27
50 rdf:rest N4dfa5de39c22434dba210f8162bfb73c
51 Nccf1f6677ba34a44929d284fb0c9031f schema:name doi
52 schema:value 10.1007/s10891-018-1899-4
53 rdf:type schema:PropertyValue
54 Nfccaef325c0f4fc0b9708ad8dffac8e5 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
57 schema:name Chemical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
60 schema:name Physical Chemistry (incl. Structural)
61 rdf:type schema:DefinedTerm
62 sg:journal.1313809 schema:issn 1062-0125
63 1573-871X
64 schema:name Journal of Engineering Physics and Thermophysics
65 rdf:type schema:Periodical
66 sg:person.010766426673.42 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
67 schema:familyName Genarova
68 schema:givenName T. N.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010766426673.42
70 rdf:type schema:Person
71 sg:person.015634010364.27 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
72 schema:familyName Zaitsev
73 schema:givenName A. L.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634010364.27
75 rdf:type schema:Person
76 sg:pub.10.1007/s10891-008-0019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005587758
77 https://doi.org/10.1007/s10891-008-0019-2
78 rdf:type schema:CreativeWork
79 sg:pub.10.1023/a:1011832828818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048296992
80 https://doi.org/10.1023/a:1011832828818
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.cpc.2009.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022497006
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1021/ic0617487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055559947
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1073/pnas.0706613104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010007860
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1090/s0025-5718-1965-0198670-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034421108
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevb.43.1993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557212
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevb.53.4958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060580326
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevb.70.235403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060612207
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.45.566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785706
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.82.3296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013611887
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.86.692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823305
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.92.106102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828040
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/revmodphys.64.1045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839239
107 rdf:type schema:CreativeWork
108 https://doi.org/10.3367/ufnr.0172.200203e.0336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071219841
109 rdf:type schema:CreativeWork
110 https://www.grid.ac/institutes/grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute
111 schema:name A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...