Simulation of the Internal Structure of a Tandem-Type Plasmatron View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-22

AUTHORS

A. Essiptchouk, L. Charakhovski

ABSTRACT

Numerical simulation of a tandem-type plasmatron intended for supersonic plasma spraying of metallic and ceramic materials at atmospheric pressure has been carried out. The calculation results are compared with experimental data. The internal gas dynamics of the plasmatron and the interaction of a plasma stream with spray particles are presented in the form of distributions of the main thermal and kinetic characteristics of stream. More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-018-1892-y

DOI

http://dx.doi.org/10.1007/s10891-018-1892-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110130918


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Instituto de Ci\u00eancia e Tecnologia, Universidade de Estadual Paulista (UNESP), 12247-004, S\u00e3o Jos\u00e9 dos Campos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Essiptchouk", 
        "givenName": "A.", 
        "id": "sg:person.010670156370.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670156370.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
          "id": "https://www.grid.ac/institutes/grid.423488.1", 
          "name": [
            "A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charakhovski", 
        "givenName": "L.", 
        "id": "sg:person.011264234177.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264234177.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2016.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000037162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(98)00709-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020093119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-009-9444-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028510821", 
          "https://doi.org/10.1007/s11666-009-9444-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-009-9444-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028510821", 
          "https://doi.org/10.1007/s11666-009-9444-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11090-014-9600-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030283067", 
          "https://doi.org/10.1007/s11090-014-9600-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/46/22/224016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035409729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10426919408934943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035498599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2717(07)40003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042673069"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-22", 
    "datePublishedReg": "2018-11-22", 
    "description": "Numerical simulation of a tandem-type plasmatron intended for supersonic plasma spraying of metallic and ceramic materials at atmospheric pressure has been carried out. The calculation results are compared with experimental data. The internal gas dynamics of the plasmatron and the interaction of a plasma stream with spray particles are presented in the form of distributions of the main thermal and kinetic characteristics of stream.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10891-018-1892-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "type": "Periodical"
      }
    ], 
    "name": "Simulation of the Internal Structure of a Tandem-Type Plasmatron", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "caaa1451af61180bd45bf3fd3e959fb4a1a4ebdfae3056b999e36e0f9a68efcf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-018-1892-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110130918"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-018-1892-y", 
      "https://app.dimensions.ai/details/publication/pub.1110130918"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000270_0000000270/records_9680_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10891-018-1892-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1892-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1892-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1892-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1892-y'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      31 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-018-1892-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2f34452fac0e4bf5849e1fc81d919e83
4 schema:citation sg:pub.10.1007/s11090-014-9600-y
5 sg:pub.10.1007/s11666-009-9444-9
6 https://doi.org/10.1016/j.jmatprotec.2016.06.027
7 https://doi.org/10.1016/s0065-2717(07)40003-x
8 https://doi.org/10.1016/s0257-8972(98)00709-9
9 https://doi.org/10.1080/10426919408934943
10 https://doi.org/10.1088/0022-3727/46/22/224016
11 schema:datePublished 2018-11-22
12 schema:datePublishedReg 2018-11-22
13 schema:description Numerical simulation of a tandem-type plasmatron intended for supersonic plasma spraying of metallic and ceramic materials at atmospheric pressure has been carried out. The calculation results are compared with experimental data. The internal gas dynamics of the plasmatron and the interaction of a plasma stream with spray particles are presented in the form of distributions of the main thermal and kinetic characteristics of stream.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf sg:journal.1313809
18 schema:name Simulation of the Internal Structure of a Tandem-Type Plasmatron
19 schema:pagination 1-8
20 schema:productId N2a6e4d01a9fd449c971f92df64fca3ff
21 Nc8968c29ad0d498d89228a564913f824
22 Nd903ce6a2f0a4910b41e56f2744c745c
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110130918
24 https://doi.org/10.1007/s10891-018-1892-y
25 schema:sdDatePublished 2019-04-11T08:11
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N66454be72234474fad037cf0371ca289
28 schema:url https://link.springer.com/10.1007%2Fs10891-018-1892-y
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N2a6e4d01a9fd449c971f92df64fca3ff schema:name readcube_id
33 schema:value caaa1451af61180bd45bf3fd3e959fb4a1a4ebdfae3056b999e36e0f9a68efcf
34 rdf:type schema:PropertyValue
35 N2f34452fac0e4bf5849e1fc81d919e83 rdf:first sg:person.010670156370.10
36 rdf:rest N6072f0231c604023bd1c2a1d23c29f9e
37 N6072f0231c604023bd1c2a1d23c29f9e rdf:first sg:person.011264234177.48
38 rdf:rest rdf:nil
39 N66454be72234474fad037cf0371ca289 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Nc8968c29ad0d498d89228a564913f824 schema:name dimensions_id
42 schema:value pub.1110130918
43 rdf:type schema:PropertyValue
44 Nd903ce6a2f0a4910b41e56f2744c745c schema:name doi
45 schema:value 10.1007/s10891-018-1892-y
46 rdf:type schema:PropertyValue
47 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
48 schema:name Engineering
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
51 schema:name Materials Engineering
52 rdf:type schema:DefinedTerm
53 sg:journal.1313809 schema:issn 1062-0125
54 1573-871X
55 schema:name Journal of Engineering Physics and Thermophysics
56 rdf:type schema:Periodical
57 sg:person.010670156370.10 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
58 schema:familyName Essiptchouk
59 schema:givenName A.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670156370.10
61 rdf:type schema:Person
62 sg:person.011264234177.48 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
63 schema:familyName Charakhovski
64 schema:givenName L.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264234177.48
66 rdf:type schema:Person
67 sg:pub.10.1007/s11090-014-9600-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030283067
68 https://doi.org/10.1007/s11090-014-9600-y
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/s11666-009-9444-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028510821
71 https://doi.org/10.1007/s11666-009-9444-9
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/j.jmatprotec.2016.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000037162
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/s0065-2717(07)40003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042673069
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/s0257-8972(98)00709-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020093119
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1080/10426919408934943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035498599
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1088/0022-3727/46/22/224016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035409729
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.410543.7 schema:alternateName Sao Paulo State University
84 schema:name Instituto de Ciência e Tecnologia, Universidade de Estadual Paulista (UNESP), 12247-004, São José dos Campos, SP, Brazil
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute
87 schema:name A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str, 220072, Minsk, Belarus
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...