Generalized Solution of the Mixed Heat-Conduction Problem by the Weighted Temperature Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

V. A. Kot

ABSTRACT

On the basis of the weighted temperature method, an algorithm of generalized solution of boundary-value problems on the heat conduction in bodies canonical in shape with boundary conditions of general form has been constructed. It is shown that this problem is equivalent, in the limit, to the infinite system of identities including n-fold integral operators for the temperature function, initial and boundary conditions, and internal heat source as well as an additional boundary function (the temperature at one of the boundary points or its derivative with respect to the coordinate of this point). High approximation accuracy of the approach proposed is demonstrated by the example of solving a number of boundary-value problems on nonstationary heat conduction with nonsymmetric and mixed boundary conditions. More... »

PAGES

1006-1028

References to SciGraph publications

  • 2016-01. Method of Weighted Temperature Function in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • 2015-03. Weighted Temperature Identities in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7

    DOI

    http://dx.doi.org/10.1007/s10891-018-1827-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106416081


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
              "id": "https://www.grid.ac/institutes/grid.423488.1", 
              "name": [
                "A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str, 220072, Minsk, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kot", 
            "givenName": "V. A.", 
            "id": "sg:person.014545666312.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10891-016-1367-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029880046", 
              "https://doi.org/10.1007/s10891-016-1367-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-015-1207-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030388329", 
              "https://doi.org/10.1007/s10891-015-1207-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07", 
        "datePublishedReg": "2018-07-01", 
        "description": "On the basis of the weighted temperature method, an algorithm of generalized solution of boundary-value problems on the heat conduction in bodies canonical in shape with boundary conditions of general form has been constructed. It is shown that this problem is equivalent, in the limit, to the infinite system of identities including n-fold integral operators for the temperature function, initial and boundary conditions, and internal heat source as well as an additional boundary function (the temperature at one of the boundary points or its derivative with respect to the coordinate of this point). High approximation accuracy of the approach proposed is demonstrated by the example of solving a number of boundary-value problems on nonstationary heat conduction with nonsymmetric and mixed boundary conditions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10891-018-1827-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313809", 
            "issn": [
              "1062-0125", 
              "1573-871X"
            ], 
            "name": "Journal of Engineering Physics and Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "91"
          }
        ], 
        "name": "Generalized Solution of the Mixed Heat-Conduction Problem by the Weighted Temperature Method", 
        "pagination": "1006-1028", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f619c37d62a6ad167ae68c10545504b048f11c98ed2669ab994280b1b63c7ff3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10891-018-1827-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106416081"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10891-018-1827-7", 
          "https://app.dimensions.ai/details/publication/pub.1106416081"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000525.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10891-018-1827-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    69 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10891-018-1827-7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N17bf95df9049477fbd5b10092f38d4c8
    4 schema:citation sg:pub.10.1007/s10891-015-1207-5
    5 sg:pub.10.1007/s10891-016-1367-y
    6 schema:datePublished 2018-07
    7 schema:datePublishedReg 2018-07-01
    8 schema:description On the basis of the weighted temperature method, an algorithm of generalized solution of boundary-value problems on the heat conduction in bodies canonical in shape with boundary conditions of general form has been constructed. It is shown that this problem is equivalent, in the limit, to the infinite system of identities including n-fold integral operators for the temperature function, initial and boundary conditions, and internal heat source as well as an additional boundary function (the temperature at one of the boundary points or its derivative with respect to the coordinate of this point). High approximation accuracy of the approach proposed is demonstrated by the example of solving a number of boundary-value problems on nonstationary heat conduction with nonsymmetric and mixed boundary conditions.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N15ddbaef491446f298373e3e8d3b1a87
    13 N717be55ed85c4a70b3075b27fc0102fe
    14 sg:journal.1313809
    15 schema:name Generalized Solution of the Mixed Heat-Conduction Problem by the Weighted Temperature Method
    16 schema:pagination 1006-1028
    17 schema:productId N26ce98126d674c6a91ebc2f228cf78e0
    18 Naf880a183c6342e5974b6cf45a454867
    19 Ncfb42f5b065b4da1abd4263aa73b0998
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106416081
    21 https://doi.org/10.1007/s10891-018-1827-7
    22 schema:sdDatePublished 2019-04-10T13:21
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N4dc52ca740f84b9fb4b55e2e8e2611a7
    25 schema:url http://link.springer.com/10.1007%2Fs10891-018-1827-7
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N15ddbaef491446f298373e3e8d3b1a87 schema:volumeNumber 91
    30 rdf:type schema:PublicationVolume
    31 N17bf95df9049477fbd5b10092f38d4c8 rdf:first sg:person.014545666312.77
    32 rdf:rest rdf:nil
    33 N26ce98126d674c6a91ebc2f228cf78e0 schema:name readcube_id
    34 schema:value f619c37d62a6ad167ae68c10545504b048f11c98ed2669ab994280b1b63c7ff3
    35 rdf:type schema:PropertyValue
    36 N4dc52ca740f84b9fb4b55e2e8e2611a7 schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 N717be55ed85c4a70b3075b27fc0102fe schema:issueNumber 4
    39 rdf:type schema:PublicationIssue
    40 Naf880a183c6342e5974b6cf45a454867 schema:name doi
    41 schema:value 10.1007/s10891-018-1827-7
    42 rdf:type schema:PropertyValue
    43 Ncfb42f5b065b4da1abd4263aa73b0998 schema:name dimensions_id
    44 schema:value pub.1106416081
    45 rdf:type schema:PropertyValue
    46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    47 schema:name Mathematical Sciences
    48 rdf:type schema:DefinedTerm
    49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Pure Mathematics
    51 rdf:type schema:DefinedTerm
    52 sg:journal.1313809 schema:issn 1062-0125
    53 1573-871X
    54 schema:name Journal of Engineering Physics and Thermophysics
    55 rdf:type schema:Periodical
    56 sg:person.014545666312.77 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
    57 schema:familyName Kot
    58 schema:givenName V. A.
    59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77
    60 rdf:type schema:Person
    61 sg:pub.10.1007/s10891-015-1207-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030388329
    62 https://doi.org/10.1007/s10891-015-1207-5
    63 rdf:type schema:CreativeWork
    64 sg:pub.10.1007/s10891-016-1367-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029880046
    65 https://doi.org/10.1007/s10891-016-1367-y
    66 rdf:type schema:CreativeWork
    67 https://www.grid.ac/institutes/grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute
    68 schema:name A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str, 220072, Minsk, Belarus
    69 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...