Generalized Solution of the Mixed Heat-Conduction Problem by the Weighted Temperature Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

V. A. Kot

ABSTRACT

On the basis of the weighted temperature method, an algorithm of generalized solution of boundary-value problems on the heat conduction in bodies canonical in shape with boundary conditions of general form has been constructed. It is shown that this problem is equivalent, in the limit, to the infinite system of identities including n-fold integral operators for the temperature function, initial and boundary conditions, and internal heat source as well as an additional boundary function (the temperature at one of the boundary points or its derivative with respect to the coordinate of this point). High approximation accuracy of the approach proposed is demonstrated by the example of solving a number of boundary-value problems on nonstationary heat conduction with nonsymmetric and mixed boundary conditions. More... »

PAGES

1006-1028

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7

DOI

http://dx.doi.org/10.1007/s10891-018-1827-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106416081


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
          "id": "https://www.grid.ac/institutes/grid.423488.1", 
          "name": [
            "A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kot", 
        "givenName": "V. A.", 
        "id": "sg:person.014545666312.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10891-016-1367-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029880046", 
          "https://doi.org/10.1007/s10891-016-1367-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10891-015-1207-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030388329", 
          "https://doi.org/10.1007/s10891-015-1207-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "On the basis of the weighted temperature method, an algorithm of generalized solution of boundary-value problems on the heat conduction in bodies canonical in shape with boundary conditions of general form has been constructed. It is shown that this problem is equivalent, in the limit, to the infinite system of identities including n-fold integral operators for the temperature function, initial and boundary conditions, and internal heat source as well as an additional boundary function (the temperature at one of the boundary points or its derivative with respect to the coordinate of this point). High approximation accuracy of the approach proposed is demonstrated by the example of solving a number of boundary-value problems on nonstationary heat conduction with nonsymmetric and mixed boundary conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10891-018-1827-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Generalized Solution of the Mixed Heat-Conduction Problem by the Weighted Temperature Method", 
    "pagination": "1006-1028", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f619c37d62a6ad167ae68c10545504b048f11c98ed2669ab994280b1b63c7ff3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-018-1827-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106416081"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-018-1827-7", 
      "https://app.dimensions.ai/details/publication/pub.1106416081"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000525.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10891-018-1827-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1827-7'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-018-1827-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N33ed04664aa34ef5af34ea042625fdaf
4 schema:citation sg:pub.10.1007/s10891-015-1207-5
5 sg:pub.10.1007/s10891-016-1367-y
6 schema:datePublished 2018-07
7 schema:datePublishedReg 2018-07-01
8 schema:description On the basis of the weighted temperature method, an algorithm of generalized solution of boundary-value problems on the heat conduction in bodies canonical in shape with boundary conditions of general form has been constructed. It is shown that this problem is equivalent, in the limit, to the infinite system of identities including n-fold integral operators for the temperature function, initial and boundary conditions, and internal heat source as well as an additional boundary function (the temperature at one of the boundary points or its derivative with respect to the coordinate of this point). High approximation accuracy of the approach proposed is demonstrated by the example of solving a number of boundary-value problems on nonstationary heat conduction with nonsymmetric and mixed boundary conditions.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N64844df2881c4c5c92682f4a1922bc54
13 N751875f0b1a24c78bd84953079e3644e
14 sg:journal.1313809
15 schema:name Generalized Solution of the Mixed Heat-Conduction Problem by the Weighted Temperature Method
16 schema:pagination 1006-1028
17 schema:productId N09fccb54728e45ceb3973762aba1c6d8
18 N3501c6c8b2c745519e6429028635f9fd
19 Nb8b6bf2db5164e96b27c9156d7849efe
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106416081
21 https://doi.org/10.1007/s10891-018-1827-7
22 schema:sdDatePublished 2019-04-10T13:21
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nb043a5a633704c5d847ab5c9cbad0456
25 schema:url http://link.springer.com/10.1007%2Fs10891-018-1827-7
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N09fccb54728e45ceb3973762aba1c6d8 schema:name dimensions_id
30 schema:value pub.1106416081
31 rdf:type schema:PropertyValue
32 N33ed04664aa34ef5af34ea042625fdaf rdf:first sg:person.014545666312.77
33 rdf:rest rdf:nil
34 N3501c6c8b2c745519e6429028635f9fd schema:name readcube_id
35 schema:value f619c37d62a6ad167ae68c10545504b048f11c98ed2669ab994280b1b63c7ff3
36 rdf:type schema:PropertyValue
37 N64844df2881c4c5c92682f4a1922bc54 schema:volumeNumber 91
38 rdf:type schema:PublicationVolume
39 N751875f0b1a24c78bd84953079e3644e schema:issueNumber 4
40 rdf:type schema:PublicationIssue
41 Nb043a5a633704c5d847ab5c9cbad0456 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Nb8b6bf2db5164e96b27c9156d7849efe schema:name doi
44 schema:value 10.1007/s10891-018-1827-7
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1313809 schema:issn 1062-0125
53 1573-871X
54 schema:name Journal of Engineering Physics and Thermophysics
55 rdf:type schema:Periodical
56 sg:person.014545666312.77 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
57 schema:familyName Kot
58 schema:givenName V. A.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77
60 rdf:type schema:Person
61 sg:pub.10.1007/s10891-015-1207-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030388329
62 https://doi.org/10.1007/s10891-015-1207-5
63 rdf:type schema:CreativeWork
64 sg:pub.10.1007/s10891-016-1367-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029880046
65 https://doi.org/10.1007/s10891-016-1367-y
66 rdf:type schema:CreativeWork
67 https://www.grid.ac/institutes/grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute
68 schema:name A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str, 220072, Minsk, Belarus
69 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...