Integral Method of Boundary Characteristics: Neumann Condition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

V. A. Kot

ABSTRACT

A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem. More... »

PAGES

445-470

References to SciGraph publications

  • 2016-07. Boundary Characteristics for the Generalized Heat-Conduction Equation and Their Equivalent Representations in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • 2017-03. The Boundary Function Method. Fundamentals in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • 2015-11. Method of Boundary Characteristics in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10891-018-1765-4

    DOI

    http://dx.doi.org/10.1007/s10891-018-1765-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103829745


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
              "id": "https://www.grid.ac/institutes/grid.423488.1", 
              "name": [
                "A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kot", 
            "givenName": "V. A.", 
            "id": "sg:person.014545666312.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0017-9310(73)90026-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000276883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(73)90026-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000276883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-015-1324-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015539405", 
              "https://doi.org/10.1007/s10891-015-1324-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-016-1461-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023207407", 
              "https://doi.org/10.1007/s10891-016-1461-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-016-1461-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023207407", 
              "https://doi.org/10.1007/s10891-016-1461-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2298/tsci0902027h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024875461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2008.10.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045936250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0307-904x(01)00016-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047290382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047928539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3680474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062139564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-017-1576-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085106214", 
              "https://doi.org/10.1007/s10891-017-1576-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-017-1576-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085106214", 
              "https://doi.org/10.1007/s10891-017-1576-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-03", 
        "datePublishedReg": "2018-03-01", 
        "description": "A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10891-018-1765-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313809", 
            "issn": [
              "1062-0125", 
              "1573-871X"
            ], 
            "name": "Journal of Engineering Physics and Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "91"
          }
        ], 
        "name": "Integral Method of Boundary Characteristics: Neumann Condition", 
        "pagination": "445-470", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ab66a6a6b5b59261063f43448ab219026ff3fc4f3adafc0d708de434455b5051"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10891-018-1765-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103829745"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10891-018-1765-4", 
          "https://app.dimensions.ai/details/publication/pub.1103829745"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113664_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10891-018-1765-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1765-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1765-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1765-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-018-1765-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10891-018-1765-4 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N41197c320df8454da8d20db3f3ecddac
    4 schema:citation sg:pub.10.1007/s10891-015-1324-1
    5 sg:pub.10.1007/s10891-016-1461-1
    6 sg:pub.10.1007/s10891-017-1576-z
    7 https://doi.org/10.1016/0017-9310(73)90026-4
    8 https://doi.org/10.1016/j.icheatmasstransfer.2008.10.013
    9 https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.015
    10 https://doi.org/10.1016/s0307-904x(01)00016-6
    11 https://doi.org/10.1115/1.3680474
    12 https://doi.org/10.2298/tsci0902027h
    13 schema:datePublished 2018-03
    14 schema:datePublishedReg 2018-03-01
    15 schema:description A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N3723a29e85404fc78fb6aa885db78cbd
    20 Na583b1a903de4583809c2418b41f58f6
    21 sg:journal.1313809
    22 schema:name Integral Method of Boundary Characteristics: Neumann Condition
    23 schema:pagination 445-470
    24 schema:productId N7c687974b026492ab6b0af81a7b29d38
    25 Nd24dd76c8192477997fd257352c7202b
    26 Ne2feecde7dbd4d93b077bb3c70528881
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103829745
    28 https://doi.org/10.1007/s10891-018-1765-4
    29 schema:sdDatePublished 2019-04-11T10:34
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nc28b2f134d4c4adc904f8001a3928cbb
    32 schema:url https://link.springer.com/10.1007%2Fs10891-018-1765-4
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N3723a29e85404fc78fb6aa885db78cbd schema:volumeNumber 91
    37 rdf:type schema:PublicationVolume
    38 N41197c320df8454da8d20db3f3ecddac rdf:first sg:person.014545666312.77
    39 rdf:rest rdf:nil
    40 N7c687974b026492ab6b0af81a7b29d38 schema:name doi
    41 schema:value 10.1007/s10891-018-1765-4
    42 rdf:type schema:PropertyValue
    43 Na583b1a903de4583809c2418b41f58f6 schema:issueNumber 2
    44 rdf:type schema:PublicationIssue
    45 Nc28b2f134d4c4adc904f8001a3928cbb schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 Nd24dd76c8192477997fd257352c7202b schema:name readcube_id
    48 schema:value ab66a6a6b5b59261063f43448ab219026ff3fc4f3adafc0d708de434455b5051
    49 rdf:type schema:PropertyValue
    50 Ne2feecde7dbd4d93b077bb3c70528881 schema:name dimensions_id
    51 schema:value pub.1103829745
    52 rdf:type schema:PropertyValue
    53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Mathematical Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Numerical and Computational Mathematics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1313809 schema:issn 1062-0125
    60 1573-871X
    61 schema:name Journal of Engineering Physics and Thermophysics
    62 rdf:type schema:Periodical
    63 sg:person.014545666312.77 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
    64 schema:familyName Kot
    65 schema:givenName V. A.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77
    67 rdf:type schema:Person
    68 sg:pub.10.1007/s10891-015-1324-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015539405
    69 https://doi.org/10.1007/s10891-015-1324-1
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/s10891-016-1461-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023207407
    72 https://doi.org/10.1007/s10891-016-1461-1
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/s10891-017-1576-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1085106214
    75 https://doi.org/10.1007/s10891-017-1576-z
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1016/0017-9310(73)90026-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000276883
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/j.icheatmasstransfer.2008.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045936250
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047928539
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/s0307-904x(01)00016-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047290382
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1115/1.3680474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062139564
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.2298/tsci0902027h schema:sameAs https://app.dimensions.ai/details/publication/pub.1024875461
    88 rdf:type schema:CreativeWork
    89 https://www.grid.ac/institutes/grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute
    90 schema:name A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...