On One Method of Solving Nonstationary Boundary-Value Problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11-15

AUTHORS

I. V. Kudinov, V. A. Kudinov, E. V. Kotova, A. V. Eremin

ABSTRACT

An exact analytical solution of the problem on the heat conduction in an infinite plate with the first-kind symmetric boundary conditions has been obtained using the integral method of heat balance with an additional desired function and additional boundary conditions. The solution of the partial differential equation was reduced to the integration of the ordinary differential equation for the additional desired function. It is shown that the fulfillment of the differential equation at the boundary points of the computational region is equivalent to its fulfillment within this region. In the approach proposed there is no need to integrate the indicated equation with respect to the space variable because of the fulfillment of the integral condition of heat balance, which allows this approach to be applied to the solution of problems that are difficult to solve with the use of classical exact analytical methods. More... »

PAGES

1317-1327

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-017-1689-4

DOI

http://dx.doi.org/10.1007/s10891-017-1689-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092686515


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "I. V.", 
        "id": "sg:person.013117131562.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotova", 
        "givenName": "E. V.", 
        "id": "sg:person.010446543622.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010446543622.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.015401043035.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965542515040089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016331359", 
          "https://doi.org/10.1134/s0965542515040089"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-15", 
    "datePublishedReg": "2017-11-15", 
    "description": "An exact analytical solution of the problem on the heat conduction in an infinite plate with the first-kind symmetric boundary conditions has been obtained using the integral method of heat balance with an additional desired function and additional boundary conditions. The solution of the partial differential equation was reduced to the integration of the ordinary differential equation for the additional desired function. It is shown that the fulfillment of the differential equation at the boundary points of the computational region is equivalent to its fulfillment within this region. In the approach proposed there is no need to integrate the indicated equation with respect to the space variable because of the fulfillment of the integral condition of heat balance, which allows this approach to be applied to the solution of problems that are difficult to solve with the use of classical exact analytical methods.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10891-017-1689-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "keywords": [
      "differential equations", 
      "partial differential equations", 
      "ordinary differential equations", 
      "boundary-value problem", 
      "nonstationary boundary-value problem", 
      "boundary conditions", 
      "solution of problems", 
      "space variables", 
      "exact analytical solution", 
      "integral conditions", 
      "exact analytical method", 
      "symmetric boundary conditions", 
      "additional boundary conditions", 
      "equations", 
      "computational region", 
      "boundary points", 
      "analytical solution", 
      "integral method", 
      "problem", 
      "heat conduction", 
      "solution", 
      "infinite plate", 
      "analytical method", 
      "approach", 
      "heat balance", 
      "function", 
      "variables", 
      "conditions", 
      "point", 
      "fulfillment", 
      "integration", 
      "respect", 
      "balance", 
      "plate", 
      "use", 
      "conduction", 
      "region", 
      "need", 
      "method", 
      "first-kind symmetric boundary conditions", 
      "classical exact analytical methods"
    ], 
    "name": "On One Method of Solving Nonstationary Boundary-Value Problems", 
    "pagination": "1317-1327", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092686515"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-017-1689-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-017-1689-4", 
      "https://app.dimensions.ai/details/publication/pub.1092686515"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_732.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10891-017-1689-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-017-1689-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-017-1689-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-017-1689-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-017-1689-4'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      22 PREDICATES      67 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-017-1689-4 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nddab528975844ba8a79a5fa64f1a59e9
4 schema:citation sg:pub.10.1134/s0965542515040089
5 schema:datePublished 2017-11-15
6 schema:datePublishedReg 2017-11-15
7 schema:description An exact analytical solution of the problem on the heat conduction in an infinite plate with the first-kind symmetric boundary conditions has been obtained using the integral method of heat balance with an additional desired function and additional boundary conditions. The solution of the partial differential equation was reduced to the integration of the ordinary differential equation for the additional desired function. It is shown that the fulfillment of the differential equation at the boundary points of the computational region is equivalent to its fulfillment within this region. In the approach proposed there is no need to integrate the indicated equation with respect to the space variable because of the fulfillment of the integral condition of heat balance, which allows this approach to be applied to the solution of problems that are difficult to solve with the use of classical exact analytical methods.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N234939e915a64d1386f7b503d5e0661f
12 N8e12a4c26e184a6bb680a1ea1a2c83a2
13 sg:journal.1313809
14 schema:keywords additional boundary conditions
15 analytical method
16 analytical solution
17 approach
18 balance
19 boundary conditions
20 boundary points
21 boundary-value problem
22 classical exact analytical methods
23 computational region
24 conditions
25 conduction
26 differential equations
27 equations
28 exact analytical method
29 exact analytical solution
30 first-kind symmetric boundary conditions
31 fulfillment
32 function
33 heat balance
34 heat conduction
35 infinite plate
36 integral conditions
37 integral method
38 integration
39 method
40 need
41 nonstationary boundary-value problem
42 ordinary differential equations
43 partial differential equations
44 plate
45 point
46 problem
47 region
48 respect
49 solution
50 solution of problems
51 space variables
52 symmetric boundary conditions
53 use
54 variables
55 schema:name On One Method of Solving Nonstationary Boundary-Value Problems
56 schema:pagination 1317-1327
57 schema:productId N20a3108dc88e40acb41e577bef4532d6
58 N8ad31ea96cec4489bd2d8f4198ce1c2e
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092686515
60 https://doi.org/10.1007/s10891-017-1689-4
61 schema:sdDatePublished 2021-11-01T18:29
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ne2f56ae4792f4e0292e692f819b88a1d
64 schema:url https://doi.org/10.1007/s10891-017-1689-4
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N20a3108dc88e40acb41e577bef4532d6 schema:name doi
69 schema:value 10.1007/s10891-017-1689-4
70 rdf:type schema:PropertyValue
71 N234939e915a64d1386f7b503d5e0661f schema:volumeNumber 90
72 rdf:type schema:PublicationVolume
73 N262e3425e587485db5553aa7942f51a8 rdf:first sg:person.015401043035.14
74 rdf:rest rdf:nil
75 N7600db9cf86a48c3835857a9995f51ef rdf:first sg:person.010446543622.50
76 rdf:rest N262e3425e587485db5553aa7942f51a8
77 N8ad31ea96cec4489bd2d8f4198ce1c2e schema:name dimensions_id
78 schema:value pub.1092686515
79 rdf:type schema:PropertyValue
80 N8e12a4c26e184a6bb680a1ea1a2c83a2 schema:issueNumber 6
81 rdf:type schema:PublicationIssue
82 Nddab528975844ba8a79a5fa64f1a59e9 rdf:first sg:person.013117131562.63
83 rdf:rest Nf6ab2d0e72f4475498e495179d24b4c3
84 Ne2f56ae4792f4e0292e692f819b88a1d schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nf6ab2d0e72f4475498e495179d24b4c3 rdf:first sg:person.014602635070.00
87 rdf:rest N7600db9cf86a48c3835857a9995f51ef
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
92 schema:name Numerical and Computational Mathematics
93 rdf:type schema:DefinedTerm
94 sg:journal.1313809 schema:issn 1062-0125
95 1573-871X
96 schema:name Journal of Engineering Physics and Thermophysics
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:person.010446543622.50 schema:affiliation grid-institutes:grid.445792.9
100 schema:familyName Kotova
101 schema:givenName E. V.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010446543622.50
103 rdf:type schema:Person
104 sg:person.013117131562.63 schema:affiliation grid-institutes:grid.445792.9
105 schema:familyName Kudinov
106 schema:givenName I. V.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63
108 rdf:type schema:Person
109 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
110 schema:familyName Kudinov
111 schema:givenName V. A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
113 rdf:type schema:Person
114 sg:person.015401043035.14 schema:affiliation grid-institutes:grid.445792.9
115 schema:familyName Eremin
116 schema:givenName A. V.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14
118 rdf:type schema:Person
119 sg:pub.10.1134/s0965542515040089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016331359
120 https://doi.org/10.1134/s0965542515040089
121 rdf:type schema:CreativeWork
122 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia
123 schema:name Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...