The Boundary Function Method. Fundamentals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

V. A. Kot

ABSTRACT

The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem. More... »

PAGES

366-391

References to SciGraph publications

  • 2016-01. Method of Weighted Temperature Function in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • 2015-03. Weighted Temperature Identities in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10891-017-1576-z

    DOI

    http://dx.doi.org/10.1007/s10891-017-1576-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085106214


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
              "id": "https://www.grid.ac/institutes/grid.423488.1", 
              "name": [
                "A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kot", 
            "givenName": "V. A.", 
            "id": "sg:person.014545666312.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10891-016-1367-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029880046", 
              "https://doi.org/10.1007/s10891-016-1367-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-015-1207-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030388329", 
              "https://doi.org/10.1007/s10891-015-1207-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/zamm.19600400145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031371217"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03", 
        "datePublishedReg": "2017-03-01", 
        "description": "The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10891-017-1576-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313809", 
            "issn": [
              "1062-0125", 
              "1573-871X"
            ], 
            "name": "Journal of Engineering Physics and Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "90"
          }
        ], 
        "name": "The Boundary Function Method. Fundamentals", 
        "pagination": "366-391", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4b151e01a7919dabc533a04e8b2a57a2ee4e1d4dc0e85904abaa656e5df93b7b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10891-017-1576-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085106214"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10891-017-1576-z", 
          "https://app.dimensions.ai/details/publication/pub.1085106214"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10891-017-1576-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-017-1576-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-017-1576-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-017-1576-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-017-1576-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    72 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10891-017-1576-z schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na59a9fcf1a2643baa76f892bb525b93c
    4 schema:citation sg:pub.10.1007/s10891-015-1207-5
    5 sg:pub.10.1007/s10891-016-1367-y
    6 https://doi.org/10.1002/zamm.19600400145
    7 schema:datePublished 2017-03
    8 schema:datePublishedReg 2017-03-01
    9 schema:description The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N36d14f2881224aeeb72a88d19e5995cd
    14 N669280bed3f04c9f8db8ac2da8406890
    15 sg:journal.1313809
    16 schema:name The Boundary Function Method. Fundamentals
    17 schema:pagination 366-391
    18 schema:productId N4e527f0242fb4c93aa590e8538d6857b
    19 Nd25968e7a4a849dcb839a6b7bec92825
    20 Nf78ebe5c39e54553ad2c71a790bd0ada
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085106214
    22 https://doi.org/10.1007/s10891-017-1576-z
    23 schema:sdDatePublished 2019-04-11T09:55
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N2f53fcd68cdd4bd2bd6fae5f3e34f661
    26 schema:url https://link.springer.com/10.1007%2Fs10891-017-1576-z
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N2f53fcd68cdd4bd2bd6fae5f3e34f661 schema:name Springer Nature - SN SciGraph project
    31 rdf:type schema:Organization
    32 N36d14f2881224aeeb72a88d19e5995cd schema:issueNumber 2
    33 rdf:type schema:PublicationIssue
    34 N4e527f0242fb4c93aa590e8538d6857b schema:name doi
    35 schema:value 10.1007/s10891-017-1576-z
    36 rdf:type schema:PropertyValue
    37 N669280bed3f04c9f8db8ac2da8406890 schema:volumeNumber 90
    38 rdf:type schema:PublicationVolume
    39 Na59a9fcf1a2643baa76f892bb525b93c rdf:first sg:person.014545666312.77
    40 rdf:rest rdf:nil
    41 Nd25968e7a4a849dcb839a6b7bec92825 schema:name dimensions_id
    42 schema:value pub.1085106214
    43 rdf:type schema:PropertyValue
    44 Nf78ebe5c39e54553ad2c71a790bd0ada schema:name readcube_id
    45 schema:value 4b151e01a7919dabc533a04e8b2a57a2ee4e1d4dc0e85904abaa656e5df93b7b
    46 rdf:type schema:PropertyValue
    47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    48 schema:name Mathematical Sciences
    49 rdf:type schema:DefinedTerm
    50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Pure Mathematics
    52 rdf:type schema:DefinedTerm
    53 sg:journal.1313809 schema:issn 1062-0125
    54 1573-871X
    55 schema:name Journal of Engineering Physics and Thermophysics
    56 rdf:type schema:Periodical
    57 sg:person.014545666312.77 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
    58 schema:familyName Kot
    59 schema:givenName V. A.
    60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77
    61 rdf:type schema:Person
    62 sg:pub.10.1007/s10891-015-1207-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030388329
    63 https://doi.org/10.1007/s10891-015-1207-5
    64 rdf:type schema:CreativeWork
    65 sg:pub.10.1007/s10891-016-1367-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029880046
    66 https://doi.org/10.1007/s10891-016-1367-y
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1002/zamm.19600400145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031371217
    69 rdf:type schema:CreativeWork
    70 https://www.grid.ac/institutes/grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute
    71 schema:name A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus
    72 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...