Boundary Characteristics for the Generalized Heat-Conduction Equation and Their Equivalent Representations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

V. A. Kot

ABSTRACT

On the basis of the consideration of the boundary-value problem for the generalized equation of heat conduction in bounded nonuniform spaces with Dirichlet, Neumann, and Robin boundary conditions, corresponding sequences of boundary characteristics have been obtained. For each of these sequences, definite integro-differential representations (relations) have been constructed. It has been shown that approximate analytical solutions can be obtained for bounded nonuniform regions with variable transfer coefficients in the Cartesian, cylindrical, and spherical coordinate systems. On the basis of systems of algebraic equations, approximate analytical solutions have been constructed with approximately equal accuracies independently of the calculation scheme used (with the introduction of the temperature-disturbance front or without it, i.e., by multiple integration of the heat-conduction equation over the whole computational region). These solutions have a negligibly small error and, therefore, can be considered as conditionally exact. More... »

PAGES

985-1007

References to SciGraph publications

  • 2016-03. Multiple Integration of the Heat-Conduction Equation for a Space Bounded From the Inside in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • 2008-01. A class of integral transformations for the generalized equation of nonstationary heat conduction in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • 2015-11. Method of Boundary Characteristics in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10891-016-1461-1

    DOI

    http://dx.doi.org/10.1007/s10891-016-1461-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023207407


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
              "id": "https://www.grid.ac/institutes/grid.423488.1", 
              "name": [
                "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kot", 
            "givenName": "V. A.", 
            "id": "sg:person.014545666312.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0017-9310(73)90026-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000276883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(73)90026-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000276883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004664951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-016-1387-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012286917", 
              "https://doi.org/10.1007/s10891-016-1387-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-015-1324-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015539405", 
              "https://doi.org/10.1007/s10891-015-1324-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-008-0023-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042669576", 
              "https://doi.org/10.1007/s10891-008-0023-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3680474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062139564"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-07", 
        "datePublishedReg": "2016-07-01", 
        "description": "On the basis of the consideration of the boundary-value problem for the generalized equation of heat conduction in bounded nonuniform spaces with Dirichlet, Neumann, and Robin boundary conditions, corresponding sequences of boundary characteristics have been obtained. For each of these sequences, definite integro-differential representations (relations) have been constructed. It has been shown that approximate analytical solutions can be obtained for bounded nonuniform regions with variable transfer coefficients in the Cartesian, cylindrical, and spherical coordinate systems. On the basis of systems of algebraic equations, approximate analytical solutions have been constructed with approximately equal accuracies independently of the calculation scheme used (with the introduction of the temperature-disturbance front or without it, i.e., by multiple integration of the heat-conduction equation over the whole computational region). These solutions have a negligibly small error and, therefore, can be considered as conditionally exact.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10891-016-1461-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313809", 
            "issn": [
              "1062-0125", 
              "1573-871X"
            ], 
            "name": "Journal of Engineering Physics and Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "89"
          }
        ], 
        "name": "Boundary Characteristics for the Generalized Heat-Conduction Equation and Their Equivalent Representations", 
        "pagination": "985-1007", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6e90d539e5a3125ad0d40121693162e7b0b37fc253c7df645b725c9bd842c265"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10891-016-1461-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023207407"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10891-016-1461-1", 
          "https://app.dimensions.ai/details/publication/pub.1023207407"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70068_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10891-016-1461-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-016-1461-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-016-1461-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-016-1461-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-016-1461-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    82 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10891-016-1461-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N68bf010335774b40b5f5be6a8631b2f5
    4 schema:citation sg:pub.10.1007/s10891-008-0023-6
    5 sg:pub.10.1007/s10891-015-1324-1
    6 sg:pub.10.1007/s10891-016-1387-7
    7 https://doi.org/10.1016/0017-9310(73)90026-4
    8 https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.006
    9 https://doi.org/10.1115/1.3680474
    10 schema:datePublished 2016-07
    11 schema:datePublishedReg 2016-07-01
    12 schema:description On the basis of the consideration of the boundary-value problem for the generalized equation of heat conduction in bounded nonuniform spaces with Dirichlet, Neumann, and Robin boundary conditions, corresponding sequences of boundary characteristics have been obtained. For each of these sequences, definite integro-differential representations (relations) have been constructed. It has been shown that approximate analytical solutions can be obtained for bounded nonuniform regions with variable transfer coefficients in the Cartesian, cylindrical, and spherical coordinate systems. On the basis of systems of algebraic equations, approximate analytical solutions have been constructed with approximately equal accuracies independently of the calculation scheme used (with the introduction of the temperature-disturbance front or without it, i.e., by multiple integration of the heat-conduction equation over the whole computational region). These solutions have a negligibly small error and, therefore, can be considered as conditionally exact.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N8b7751c5d8164c009943c806520da523
    17 Nb51b3ea94e06427c8b5d71cf13562964
    18 sg:journal.1313809
    19 schema:name Boundary Characteristics for the Generalized Heat-Conduction Equation and Their Equivalent Representations
    20 schema:pagination 985-1007
    21 schema:productId N2251e4ba862f40dcad0f6c4f2c436a9b
    22 Nc32cdfdf5c2f495aaf1dfbf9dd0b8e14
    23 Ndf2254f573ab4980a9ed758a93e37a0d
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023207407
    25 https://doi.org/10.1007/s10891-016-1461-1
    26 schema:sdDatePublished 2019-04-11T12:44
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N230205d9e9ce447a8516ba49f9609fb1
    29 schema:url https://link.springer.com/10.1007%2Fs10891-016-1461-1
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N2251e4ba862f40dcad0f6c4f2c436a9b schema:name readcube_id
    34 schema:value 6e90d539e5a3125ad0d40121693162e7b0b37fc253c7df645b725c9bd842c265
    35 rdf:type schema:PropertyValue
    36 N230205d9e9ce447a8516ba49f9609fb1 schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 N68bf010335774b40b5f5be6a8631b2f5 rdf:first sg:person.014545666312.77
    39 rdf:rest rdf:nil
    40 N8b7751c5d8164c009943c806520da523 schema:volumeNumber 89
    41 rdf:type schema:PublicationVolume
    42 Nb51b3ea94e06427c8b5d71cf13562964 schema:issueNumber 4
    43 rdf:type schema:PublicationIssue
    44 Nc32cdfdf5c2f495aaf1dfbf9dd0b8e14 schema:name doi
    45 schema:value 10.1007/s10891-016-1461-1
    46 rdf:type schema:PropertyValue
    47 Ndf2254f573ab4980a9ed758a93e37a0d schema:name dimensions_id
    48 schema:value pub.1023207407
    49 rdf:type schema:PropertyValue
    50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Mathematical Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Pure Mathematics
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1313809 schema:issn 1062-0125
    57 1573-871X
    58 schema:name Journal of Engineering Physics and Thermophysics
    59 rdf:type schema:Periodical
    60 sg:person.014545666312.77 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
    61 schema:familyName Kot
    62 schema:givenName V. A.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77
    64 rdf:type schema:Person
    65 sg:pub.10.1007/s10891-008-0023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042669576
    66 https://doi.org/10.1007/s10891-008-0023-6
    67 rdf:type schema:CreativeWork
    68 sg:pub.10.1007/s10891-015-1324-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015539405
    69 https://doi.org/10.1007/s10891-015-1324-1
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/s10891-016-1387-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012286917
    72 https://doi.org/10.1007/s10891-016-1387-7
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1016/0017-9310(73)90026-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000276883
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004664951
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1115/1.3680474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062139564
    79 rdf:type schema:CreativeWork
    80 https://www.grid.ac/institutes/grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute
    81 schema:name A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus
    82 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...