Multiple Integration of the Heat-Conduction Equation for a Space Bounded From the Inside View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03

AUTHORS

V. A. Kot

ABSTRACT

An N-fold integration of the heat-conduction equation for a space bounded from the inside has been performed using a system of identical equalities with definition of the temperature function by a power polynomial with an exponential factor. It is shown that, in a number of cases, the approximate solutions obtained can be considered as exact because their errors comprise hundredths and thousandths of a percent. The method proposed for N-fold integration represents an alternative to classical integral transformations. More... »

PAGES

369-390

References to SciGraph publications

  • 2008-01. A class of integral transformations for the generalized equation of nonstationary heat conduction in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • 2014-05. Radial Model of Steam Extraction from a High-Temperature Bed by Means of a Single Well in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10891-016-1387-7

    DOI

    http://dx.doi.org/10.1007/s10891-016-1387-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012286917


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "A.V. Luikov Heat and Mass Transfer Institute", 
              "id": "https://www.grid.ac/institutes/grid.423488.1", 
              "name": [
                "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kot", 
            "givenName": "V. A.", 
            "id": "sg:person.014545666312.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.2514/3.7111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006808095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0065-2717(08)70097-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036366356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-014-1045-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039918363", 
              "https://doi.org/10.1007/s10891-014-1045-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(66)90017-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039985619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(66)90017-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039985619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10891-008-0023-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042669576", 
              "https://doi.org/10.1007/s10891-008-0023-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-03", 
        "datePublishedReg": "2016-03-01", 
        "description": "An N-fold integration of the heat-conduction equation for a space bounded from the inside has been performed using a system of identical equalities with definition of the temperature function by a power polynomial with an exponential factor. It is shown that, in a number of cases, the approximate solutions obtained can be considered as exact because their errors comprise hundredths and thousandths of a percent. The method proposed for N-fold integration represents an alternative to classical integral transformations.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10891-016-1387-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313809", 
            "issn": [
              "1062-0125", 
              "1573-871X"
            ], 
            "name": "Journal of Engineering Physics and Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "89"
          }
        ], 
        "name": "Multiple Integration of the Heat-Conduction Equation for a Space Bounded From the Inside", 
        "pagination": "369-390", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3a8a032408bebe94e8f6cc9bdc4bb67532e2452f5931f7b08d92ce3c86872365"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10891-016-1387-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012286917"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10891-016-1387-7", 
          "https://app.dimensions.ai/details/publication/pub.1012286917"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000511.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10891-016-1387-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-016-1387-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-016-1387-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-016-1387-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-016-1387-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10891-016-1387-7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N84849e114c7347409032ea83846a103a
    4 schema:citation sg:pub.10.1007/s10891-008-0023-6
    5 sg:pub.10.1007/s10891-014-1045-x
    6 https://doi.org/10.1016/0017-9310(66)90017-2
    7 https://doi.org/10.1016/s0065-2717(08)70097-2
    8 https://doi.org/10.2514/3.7111
    9 schema:datePublished 2016-03
    10 schema:datePublishedReg 2016-03-01
    11 schema:description An N-fold integration of the heat-conduction equation for a space bounded from the inside has been performed using a system of identical equalities with definition of the temperature function by a power polynomial with an exponential factor. It is shown that, in a number of cases, the approximate solutions obtained can be considered as exact because their errors comprise hundredths and thousandths of a percent. The method proposed for N-fold integration represents an alternative to classical integral transformations.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N13d829f33e7e474a8d0fbec83eed9861
    16 N9a98c7632408465689f1c7ee45ba9571
    17 sg:journal.1313809
    18 schema:name Multiple Integration of the Heat-Conduction Equation for a Space Bounded From the Inside
    19 schema:pagination 369-390
    20 schema:productId N0d32b504c2164669b6e5b3efa9941175
    21 N534eba1adcc54d4a9c97d95bdb9131b7
    22 N54f25d636b9d4f1f8f79b2f9dc70bed2
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012286917
    24 https://doi.org/10.1007/s10891-016-1387-7
    25 schema:sdDatePublished 2019-04-10T18:20
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N68b6a6404bd34a4aa169d169b80567b3
    28 schema:url http://link.springer.com/10.1007%2Fs10891-016-1387-7
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N0d32b504c2164669b6e5b3efa9941175 schema:name dimensions_id
    33 schema:value pub.1012286917
    34 rdf:type schema:PropertyValue
    35 N13d829f33e7e474a8d0fbec83eed9861 schema:issueNumber 2
    36 rdf:type schema:PublicationIssue
    37 N534eba1adcc54d4a9c97d95bdb9131b7 schema:name readcube_id
    38 schema:value 3a8a032408bebe94e8f6cc9bdc4bb67532e2452f5931f7b08d92ce3c86872365
    39 rdf:type schema:PropertyValue
    40 N54f25d636b9d4f1f8f79b2f9dc70bed2 schema:name doi
    41 schema:value 10.1007/s10891-016-1387-7
    42 rdf:type schema:PropertyValue
    43 N68b6a6404bd34a4aa169d169b80567b3 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N84849e114c7347409032ea83846a103a rdf:first sg:person.014545666312.77
    46 rdf:rest rdf:nil
    47 N9a98c7632408465689f1c7ee45ba9571 schema:volumeNumber 89
    48 rdf:type schema:PublicationVolume
    49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Mathematical Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Pure Mathematics
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1313809 schema:issn 1062-0125
    56 1573-871X
    57 schema:name Journal of Engineering Physics and Thermophysics
    58 rdf:type schema:Periodical
    59 sg:person.014545666312.77 schema:affiliation https://www.grid.ac/institutes/grid.423488.1
    60 schema:familyName Kot
    61 schema:givenName V. A.
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545666312.77
    63 rdf:type schema:Person
    64 sg:pub.10.1007/s10891-008-0023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042669576
    65 https://doi.org/10.1007/s10891-008-0023-6
    66 rdf:type schema:CreativeWork
    67 sg:pub.10.1007/s10891-014-1045-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039918363
    68 https://doi.org/10.1007/s10891-014-1045-x
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1016/0017-9310(66)90017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039985619
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1016/s0065-2717(08)70097-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036366356
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.2514/3.7111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006808095
    75 rdf:type schema:CreativeWork
    76 https://www.grid.ac/institutes/grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute
    77 schema:name A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., 220072, Minsk, Belarus
    78 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...