Analytical solution of the Stefan problem with account for the ablation and the temperature-disturbance front View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-11-25

AUTHORS

V. A. Kudinov, A. V. Eremin, I. V. Kudinov

ABSTRACT

An approximate analytical solution of the problem on the heat conduction of an infinite plate has been obtained on the basis of the determination of the temperature-disturbance front and the introduction of additional boundary conditions with account for the movement of the melting front in the case where the melted substance is completely removed (Stefan problem with ablation). A method for construction of additional boundary conditions, which allows one to obtain solutions of the indicated problem for engineering applications in the form of simple algebraic polynomials free of special functions, is proposed. The accuracy of these solutions is determined by the number of approximations, which is not limited in the case where additional boundary conditions are used. More... »

PAGES

1441-1452

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-012-0794-7

DOI

http://dx.doi.org/10.1007/s10891-012-0794-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033609452


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.015401043035.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "I. V.", 
        "id": "sg:person.013117131562.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10891-011-0578-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040741780", 
          "https://doi.org/10.1007/s10891-011-0578-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-11-25", 
    "datePublishedReg": "2012-11-25", 
    "description": "An approximate analytical solution of the problem on the heat conduction of an infinite plate has been obtained on the basis of the determination of the temperature-disturbance front and the introduction of additional boundary conditions with account for the movement of the melting front in the case where the melted substance is completely removed (Stefan problem with ablation). A method for construction of additional boundary conditions, which allows one to obtain solutions of the indicated problem for engineering applications in the form of simple algebraic polynomials free of special functions, is proposed. The accuracy of these solutions is determined by the number of approximations, which is not limited in the case where additional boundary conditions are used.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10891-012-0794-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "keywords": [
      "additional boundary conditions", 
      "boundary conditions", 
      "analytical solution", 
      "heat conduction", 
      "melting front", 
      "engineering applications", 
      "approximate analytical solution", 
      "Stefan problem", 
      "infinite plate", 
      "simple algebraic polynomials", 
      "front", 
      "solution", 
      "number of approximations", 
      "conduction", 
      "conditions", 
      "plate", 
      "applications", 
      "problem", 
      "account", 
      "accuracy", 
      "construction", 
      "method", 
      "determination", 
      "approximation", 
      "special functions", 
      "cases", 
      "introduction", 
      "movement", 
      "substances", 
      "basis", 
      "number", 
      "ablation", 
      "form", 
      "function", 
      "polynomials", 
      "algebraic polynomials", 
      "temperature-disturbance front"
    ], 
    "name": "Analytical solution of the Stefan problem with account for the ablation and the temperature-disturbance front", 
    "pagination": "1441-1452", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033609452"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-012-0794-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-012-0794-7", 
      "https://app.dimensions.ai/details/publication/pub.1033609452"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10891-012-0794-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-012-0794-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-012-0794-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-012-0794-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-012-0794-7'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      22 PREDICATES      63 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-012-0794-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc87d9d1c06d24f73967d9d7b38cc64c0
4 schema:citation sg:pub.10.1007/s10891-011-0578-5
5 schema:datePublished 2012-11-25
6 schema:datePublishedReg 2012-11-25
7 schema:description An approximate analytical solution of the problem on the heat conduction of an infinite plate has been obtained on the basis of the determination of the temperature-disturbance front and the introduction of additional boundary conditions with account for the movement of the melting front in the case where the melted substance is completely removed (Stefan problem with ablation). A method for construction of additional boundary conditions, which allows one to obtain solutions of the indicated problem for engineering applications in the form of simple algebraic polynomials free of special functions, is proposed. The accuracy of these solutions is determined by the number of approximations, which is not limited in the case where additional boundary conditions are used.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N09c8edb747eb473d99b3a5e02ecfe142
12 Nfc2851672e2540f481e9b2049ec0d0cb
13 sg:journal.1313809
14 schema:keywords Stefan problem
15 ablation
16 account
17 accuracy
18 additional boundary conditions
19 algebraic polynomials
20 analytical solution
21 applications
22 approximate analytical solution
23 approximation
24 basis
25 boundary conditions
26 cases
27 conditions
28 conduction
29 construction
30 determination
31 engineering applications
32 form
33 front
34 function
35 heat conduction
36 infinite plate
37 introduction
38 melting front
39 method
40 movement
41 number
42 number of approximations
43 plate
44 polynomials
45 problem
46 simple algebraic polynomials
47 solution
48 special functions
49 substances
50 temperature-disturbance front
51 schema:name Analytical solution of the Stefan problem with account for the ablation and the temperature-disturbance front
52 schema:pagination 1441-1452
53 schema:productId N3178f292b2ef48ed992d162c65e189b4
54 N79fb1245617f4d93b679d11fb2650e54
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033609452
56 https://doi.org/10.1007/s10891-012-0794-7
57 schema:sdDatePublished 2021-12-01T19:27
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Ndd71c99b21264974980e5cdd3b856a56
60 schema:url https://doi.org/10.1007/s10891-012-0794-7
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N09c8edb747eb473d99b3a5e02ecfe142 schema:volumeNumber 85
65 rdf:type schema:PublicationVolume
66 N31613431402b4a2faff44dac4f903ecb rdf:first sg:person.015401043035.14
67 rdf:rest Nf14731c6ca2d450ca9a5e9d8a20a3d2b
68 N3178f292b2ef48ed992d162c65e189b4 schema:name dimensions_id
69 schema:value pub.1033609452
70 rdf:type schema:PropertyValue
71 N79fb1245617f4d93b679d11fb2650e54 schema:name doi
72 schema:value 10.1007/s10891-012-0794-7
73 rdf:type schema:PropertyValue
74 Nc87d9d1c06d24f73967d9d7b38cc64c0 rdf:first sg:person.014602635070.00
75 rdf:rest N31613431402b4a2faff44dac4f903ecb
76 Ndd71c99b21264974980e5cdd3b856a56 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nf14731c6ca2d450ca9a5e9d8a20a3d2b rdf:first sg:person.013117131562.63
79 rdf:rest rdf:nil
80 Nfc2851672e2540f481e9b2049ec0d0cb schema:issueNumber 6
81 rdf:type schema:PublicationIssue
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 sg:journal.1313809 schema:issn 1062-0125
89 1573-871X
90 schema:name Journal of Engineering Physics and Thermophysics
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.013117131562.63 schema:affiliation grid-institutes:grid.445792.9
94 schema:familyName Kudinov
95 schema:givenName I. V.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63
97 rdf:type schema:Person
98 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
99 schema:familyName Kudinov
100 schema:givenName V. A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
102 rdf:type schema:Person
103 sg:person.015401043035.14 schema:affiliation grid-institutes:grid.445792.9
104 schema:familyName Eremin
105 schema:givenName A. V.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14
107 rdf:type schema:Person
108 sg:pub.10.1007/s10891-011-0578-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040741780
109 https://doi.org/10.1007/s10891-011-0578-5
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia
112 schema:name Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...