Formation of a detonation wave in the process of chemical condensation of carbon nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

A. V. Emel’yanov, A. V. Eremin, V. E. Fortov

ABSTRACT

A new physical phenomenon — the formation of a detonation wave as a result of the condensation of substances — was investigated in detail. A detonation wave was formed under the action of the energy released in a process of chemical condensation of carbon nanoparticles behind a shock wave in the mixture initially containing 10–30% of the carbon suboxide C3O2 or acetylene C2H2 in argon. The propagation of the shock wave in this mixture led to the rapid thermal disintegration of its initial molecules and the subsequent formation of a condensed carbon with a significant energy release. The increase in the temperature and in the pressure of the reacting mixture leads to a strengthening of the shock wave and to its transformation into a detonation wave. The main kinetic characteristics of the reaction of thermal disintegration of the indicated molecules and their subsequent chemical condensation as well as the interrelation of these characteristics with the heat-release processes forming the detonation wave were determined. More... »

PAGES

1197-1209

References to SciGraph publications

  • 1977-11. Role of soot in acetylene detonation in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10891-010-0442-z

    DOI

    http://dx.doi.org/10.1007/s10891-010-0442-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021765357


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Joint Institute of High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Emel\u2019yanov", 
            "givenName": "A. V.", 
            "id": "sg:person.014053220327.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053220327.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Joint Institute of High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eremin", 
            "givenName": "A. V.", 
            "id": "sg:person.014424512265.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Joint Institute of High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fortov", 
            "givenName": "V. E.", 
            "id": "sg:person.013666544547.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666544547.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0010-2180(83)90024-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000668512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-2180(83)90024-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000668512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1540-7489(02)80284-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000719172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2004.08.155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004642701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0082-0784(06)80426-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006297027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-2180(78)90092-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006343452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-2180(78)90092-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006343452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-2180(99)00167-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009023978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00740467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010667528", 
              "https://doi.org/10.1007/bf00740467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00740467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010667528", 
              "https://doi.org/10.1007/bf00740467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proci.2006.07.063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014029748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1524/zpch.1998.203.part_1_2.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021204664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1540-7489(02)80286-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022133727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0082-0784(79)80057-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045610451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00102200008947344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046378834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.combustflame.2003.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047086856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.combustflame.2003.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047086856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/df9562200157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051048559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1524/zpch.1999.212.part_2.219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052158385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.468957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058046949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.79.035303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060738699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.79.035303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060738699"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-12", 
        "datePublishedReg": "2010-12-01", 
        "description": "A new physical phenomenon \u2014 the formation of a detonation wave as a result of the condensation of substances \u2014 was investigated in detail. A detonation wave was formed under the action of the energy released in a process of chemical condensation of carbon nanoparticles behind a shock wave in the mixture initially containing 10\u201330% of the carbon suboxide C3O2 or acetylene C2H2 in argon. The propagation of the shock wave in this mixture led to the rapid thermal disintegration of its initial molecules and the subsequent formation of a condensed carbon with a significant energy release. The increase in the temperature and in the pressure of the reacting mixture leads to a strengthening of the shock wave and to its transformation into a detonation wave. The main kinetic characteristics of the reaction of thermal disintegration of the indicated molecules and their subsequent chemical condensation as well as the interrelation of these characteristics with the heat-release processes forming the detonation wave were determined.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10891-010-0442-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313809", 
            "issn": [
              "1062-0125", 
              "1573-871X"
            ], 
            "name": "Journal of Engineering Physics and Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "83"
          }
        ], 
        "name": "Formation of a detonation wave in the process of chemical condensation of carbon nanoparticles", 
        "pagination": "1197-1209", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "67b2db22f7c767a5689c39a645b65cd820249ffad98e3e14b00df0e35f06d526"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10891-010-0442-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021765357"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10891-010-0442-z", 
          "https://app.dimensions.ai/details/publication/pub.1021765357"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60367_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10891-010-0442-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-010-0442-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-010-0442-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-010-0442-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-010-0442-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    127 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10891-010-0442-z schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Na9ad5b80983843d0bb4e8ff8f8ee6f1b
    4 schema:citation sg:pub.10.1007/bf00740467
    5 https://doi.org/10.1016/0010-2180(78)90092-5
    6 https://doi.org/10.1016/0010-2180(83)90024-x
    7 https://doi.org/10.1016/j.combustflame.2003.09.006
    8 https://doi.org/10.1016/j.proci.2004.08.155
    9 https://doi.org/10.1016/j.proci.2006.07.063
    10 https://doi.org/10.1016/s0010-2180(99)00167-4
    11 https://doi.org/10.1016/s0082-0784(06)80426-1
    12 https://doi.org/10.1016/s0082-0784(79)80057-0
    13 https://doi.org/10.1016/s1540-7489(02)80284-x
    14 https://doi.org/10.1016/s1540-7489(02)80286-3
    15 https://doi.org/10.1039/df9562200157
    16 https://doi.org/10.1063/1.468957
    17 https://doi.org/10.1080/00102200008947344
    18 https://doi.org/10.1103/physreve.79.035303
    19 https://doi.org/10.1524/zpch.1998.203.part_1_2.001
    20 https://doi.org/10.1524/zpch.1999.212.part_2.219
    21 schema:datePublished 2010-12
    22 schema:datePublishedReg 2010-12-01
    23 schema:description A new physical phenomenon — the formation of a detonation wave as a result of the condensation of substances — was investigated in detail. A detonation wave was formed under the action of the energy released in a process of chemical condensation of carbon nanoparticles behind a shock wave in the mixture initially containing 10–30% of the carbon suboxide C3O2 or acetylene C2H2 in argon. The propagation of the shock wave in this mixture led to the rapid thermal disintegration of its initial molecules and the subsequent formation of a condensed carbon with a significant energy release. The increase in the temperature and in the pressure of the reacting mixture leads to a strengthening of the shock wave and to its transformation into a detonation wave. The main kinetic characteristics of the reaction of thermal disintegration of the indicated molecules and their subsequent chemical condensation as well as the interrelation of these characteristics with the heat-release processes forming the detonation wave were determined.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N54330ea6404b4abbb2be848b5be85f9c
    28 Nc092d649c52d4bef953d649cb32a9fa8
    29 sg:journal.1313809
    30 schema:name Formation of a detonation wave in the process of chemical condensation of carbon nanoparticles
    31 schema:pagination 1197-1209
    32 schema:productId N1b00308cf8ed48a0a1c8a4632abbff8d
    33 N66ff8150eed34175badcc40140b8af8e
    34 Nf419e98af5c8403588d5c3db65b2cb78
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021765357
    36 https://doi.org/10.1007/s10891-010-0442-z
    37 schema:sdDatePublished 2019-04-11T11:04
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Nddda8d9c8d164055adff58a9e4b97749
    40 schema:url http://link.springer.com/10.1007%2Fs10891-010-0442-z
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N1b00308cf8ed48a0a1c8a4632abbff8d schema:name dimensions_id
    45 schema:value pub.1021765357
    46 rdf:type schema:PropertyValue
    47 N54330ea6404b4abbb2be848b5be85f9c schema:volumeNumber 83
    48 rdf:type schema:PublicationVolume
    49 N66ff8150eed34175badcc40140b8af8e schema:name doi
    50 schema:value 10.1007/s10891-010-0442-z
    51 rdf:type schema:PropertyValue
    52 N6987577d44eb43be87ac98c946b039c7 rdf:first sg:person.014424512265.37
    53 rdf:rest N73ff8997127341d9be6ae97a3a1bf66d
    54 N73ff8997127341d9be6ae97a3a1bf66d rdf:first sg:person.013666544547.25
    55 rdf:rest rdf:nil
    56 Na9ad5b80983843d0bb4e8ff8f8ee6f1b rdf:first sg:person.014053220327.39
    57 rdf:rest N6987577d44eb43be87ac98c946b039c7
    58 Nc092d649c52d4bef953d649cb32a9fa8 schema:issueNumber 6
    59 rdf:type schema:PublicationIssue
    60 Nddda8d9c8d164055adff58a9e4b97749 schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 Nf419e98af5c8403588d5c3db65b2cb78 schema:name readcube_id
    63 schema:value 67b2db22f7c767a5689c39a645b65cd820249ffad98e3e14b00df0e35f06d526
    64 rdf:type schema:PropertyValue
    65 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Chemical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Physical Chemistry (incl. Structural)
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1313809 schema:issn 1062-0125
    72 1573-871X
    73 schema:name Journal of Engineering Physics and Thermophysics
    74 rdf:type schema:Periodical
    75 sg:person.013666544547.25 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    76 schema:familyName Fortov
    77 schema:givenName V. E.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666544547.25
    79 rdf:type schema:Person
    80 sg:person.014053220327.39 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    81 schema:familyName Emel’yanov
    82 schema:givenName A. V.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053220327.39
    84 rdf:type schema:Person
    85 sg:person.014424512265.37 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    86 schema:familyName Eremin
    87 schema:givenName A. V.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37
    89 rdf:type schema:Person
    90 sg:pub.10.1007/bf00740467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010667528
    91 https://doi.org/10.1007/bf00740467
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/0010-2180(78)90092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006343452
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/0010-2180(83)90024-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000668512
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.combustflame.2003.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047086856
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.proci.2004.08.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004642701
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.proci.2006.07.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014029748
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/s0010-2180(99)00167-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009023978
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/s0082-0784(06)80426-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006297027
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/s0082-0784(79)80057-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045610451
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/s1540-7489(02)80284-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000719172
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/s1540-7489(02)80286-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022133727
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1039/df9562200157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051048559
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1063/1.468957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058046949
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1080/00102200008947344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046378834
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1103/physreve.79.035303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060738699
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1524/zpch.1998.203.part_1_2.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021204664
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1524/zpch.1999.212.part_2.219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052158385
    124 rdf:type schema:CreativeWork
    125 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    126 schema:name Joint Institute of High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412, Moscow, Russia
    127 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...