On One Method of Solving Nonstationary Heat-Conduction Problems for Multilayer Structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-03

AUTHORS

V. A. Kudinov, V. V. Dikop, S. A. Nazarenko, E. V. Stefanyuk

ABSTRACT

As applied to the solution of the heat-conduction problem for a two-layer structure, the Fourier method is used jointly with the orthogonal Bubnov-Galerkin method. An important feature is the introduction of additional boundary conditions, the need for which is explained by the appearance of an additional parameter μ after the separation of the variables in the input differential equation. The additional boundary conditions are derived from the basic differential equation by differentiating it at the boundary points. More... »

PAGES

225-230

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3

DOI

http://dx.doi.org/10.1007/s10891-005-0052-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029846856


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dikop", 
        "givenName": "V. V.", 
        "id": "sg:person.012071441771.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071441771.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarenko", 
        "givenName": "S. A.", 
        "id": "sg:person.015130252601.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130252601.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stefanyuk", 
        "givenName": "E. V.", 
        "id": "sg:person.010637046537.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-03", 
    "datePublishedReg": "2005-03-01", 
    "description": "As applied to the solution of the heat-conduction problem for a two-layer structure, the Fourier method is used jointly with the orthogonal Bubnov-Galerkin method. An important feature is the introduction of additional boundary conditions, the need for which is explained by the appearance of an additional parameter \u03bc after the separation of the variables in the input differential equation. The additional boundary conditions are derived from the basic differential equation by differentiating it at the boundary points.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10891-005-0052-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "keywords": [
      "heat-conduction problem", 
      "additional boundary conditions", 
      "two-layer structure", 
      "boundary conditions", 
      "Bubnov-Galerkin method", 
      "multilayer structure", 
      "differential equations", 
      "basic differential equations", 
      "boundary points", 
      "parameter \u03bc", 
      "Fourier methods", 
      "equations", 
      "structure", 
      "method", 
      "conditions", 
      "problem", 
      "important features", 
      "separation", 
      "solution", 
      "variables", 
      "point", 
      "features", 
      "introduction", 
      "need", 
      "appearance", 
      "orthogonal Bubnov-Galerkin method", 
      "additional parameter \u03bc", 
      "input differential equation", 
      "Solving Nonstationary Heat-Conduction Problems", 
      "Nonstationary Heat-Conduction Problems"
    ], 
    "name": "On One Method of Solving Nonstationary Heat-Conduction Problems for Multilayer Structures", 
    "pagination": "225-230", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029846856"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-005-0052-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-005-0052-3", 
      "https://app.dimensions.ai/details/publication/pub.1029846856"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_404.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10891-005-0052-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      56 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-005-0052-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N32c7d43f84b341a88eb259b1754714ba
4 schema:datePublished 2005-03
5 schema:datePublishedReg 2005-03-01
6 schema:description As applied to the solution of the heat-conduction problem for a two-layer structure, the Fourier method is used jointly with the orthogonal Bubnov-Galerkin method. An important feature is the introduction of additional boundary conditions, the need for which is explained by the appearance of an additional parameter μ after the separation of the variables in the input differential equation. The additional boundary conditions are derived from the basic differential equation by differentiating it at the boundary points.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N66cc4f673c4c41ab945f77dda3c1f6fb
11 N7618c6b4bc5f4b34b06774f6dda826b9
12 sg:journal.1313809
13 schema:keywords Bubnov-Galerkin method
14 Fourier methods
15 Nonstationary Heat-Conduction Problems
16 Solving Nonstationary Heat-Conduction Problems
17 additional boundary conditions
18 additional parameter μ
19 appearance
20 basic differential equations
21 boundary conditions
22 boundary points
23 conditions
24 differential equations
25 equations
26 features
27 heat-conduction problem
28 important features
29 input differential equation
30 introduction
31 method
32 multilayer structure
33 need
34 orthogonal Bubnov-Galerkin method
35 parameter μ
36 point
37 problem
38 separation
39 solution
40 structure
41 two-layer structure
42 variables
43 schema:name On One Method of Solving Nonstationary Heat-Conduction Problems for Multilayer Structures
44 schema:pagination 225-230
45 schema:productId N2521a77e33754e18bb861e99e3f92af6
46 Nfcf8ac06d25c4360b3fe72e18f1ee9f4
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029846856
48 https://doi.org/10.1007/s10891-005-0052-3
49 schema:sdDatePublished 2021-11-01T18:08
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nd44689b1d8ab4d1c8df452ae2b0e4cdd
52 schema:url https://doi.org/10.1007/s10891-005-0052-3
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2521a77e33754e18bb861e99e3f92af6 schema:name doi
57 schema:value 10.1007/s10891-005-0052-3
58 rdf:type schema:PropertyValue
59 N32c7d43f84b341a88eb259b1754714ba rdf:first sg:person.014602635070.00
60 rdf:rest Nda9da8cf2c494942b152c763a8896792
61 N476e9732260f49d5ac6006f284d083d6 rdf:first sg:person.010637046537.80
62 rdf:rest rdf:nil
63 N66cc4f673c4c41ab945f77dda3c1f6fb schema:issueNumber 2
64 rdf:type schema:PublicationIssue
65 N7618c6b4bc5f4b34b06774f6dda826b9 schema:volumeNumber 78
66 rdf:type schema:PublicationVolume
67 Nb883af979825404b98c7859ddcf73b6f rdf:first sg:person.015130252601.62
68 rdf:rest N476e9732260f49d5ac6006f284d083d6
69 Nd44689b1d8ab4d1c8df452ae2b0e4cdd schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nda9da8cf2c494942b152c763a8896792 rdf:first sg:person.012071441771.16
72 rdf:rest Nb883af979825404b98c7859ddcf73b6f
73 Nfcf8ac06d25c4360b3fe72e18f1ee9f4 schema:name dimensions_id
74 schema:value pub.1029846856
75 rdf:type schema:PropertyValue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1313809 schema:issn 1062-0125
83 1573-871X
84 schema:name Journal of Engineering Physics and Thermophysics
85 schema:publisher Springer Nature
86 rdf:type schema:Periodical
87 sg:person.010637046537.80 schema:affiliation grid-institutes:grid.445792.9
88 schema:familyName Stefanyuk
89 schema:givenName E. V.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80
91 rdf:type schema:Person
92 sg:person.012071441771.16 schema:affiliation grid-institutes:grid.445792.9
93 schema:familyName Dikop
94 schema:givenName V. V.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071441771.16
96 rdf:type schema:Person
97 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
98 schema:familyName Kudinov
99 schema:givenName V. A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
101 rdf:type schema:Person
102 sg:person.015130252601.62 schema:affiliation grid-institutes:grid.445792.9
103 schema:familyName Nazarenko
104 schema:givenName S. A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130252601.62
106 rdf:type schema:Person
107 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia
108 schema:name Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...