On One Method of Solving Nonstationary Heat-Conduction Problems for Multilayer Structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-03

AUTHORS

V. A. Kudinov, V. V. Dikop, S. A. Nazarenko, E. V. Stefanyuk

ABSTRACT

As applied to the solution of the heat-conduction problem for a two-layer structure, the Fourier method is used jointly with the orthogonal Bubnov-Galerkin method. An important feature is the introduction of additional boundary conditions, the need for which is explained by the appearance of an additional parameter μ after the separation of the variables in the input differential equation. The additional boundary conditions are derived from the basic differential equation by differentiating it at the boundary points. More... »

PAGES

225-230

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3

DOI

http://dx.doi.org/10.1007/s10891-005-0052-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029846856


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dikop", 
        "givenName": "V. V.", 
        "id": "sg:person.012071441771.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071441771.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarenko", 
        "givenName": "S. A.", 
        "id": "sg:person.015130252601.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130252601.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stefanyuk", 
        "givenName": "E. V.", 
        "id": "sg:person.010637046537.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-03", 
    "datePublishedReg": "2005-03-01", 
    "description": "As applied to the solution of the heat-conduction problem for a two-layer structure, the Fourier method is used jointly with the orthogonal Bubnov-Galerkin method. An important feature is the introduction of additional boundary conditions, the need for which is explained by the appearance of an additional parameter \u03bc after the separation of the variables in the input differential equation. The additional boundary conditions are derived from the basic differential equation by differentiating it at the boundary points.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10891-005-0052-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "keywords": [
      "heat-conduction problem", 
      "additional boundary conditions", 
      "two-layer structure", 
      "boundary conditions", 
      "Bubnov-Galerkin method", 
      "multilayer structure", 
      "differential equations", 
      "basic differential equations", 
      "boundary points", 
      "parameter \u03bc", 
      "Fourier methods", 
      "equations", 
      "structure", 
      "method", 
      "conditions", 
      "problem", 
      "important features", 
      "separation", 
      "solution", 
      "variables", 
      "point", 
      "features", 
      "introduction", 
      "need", 
      "appearance", 
      "orthogonal Bubnov-Galerkin method", 
      "additional parameter \u03bc", 
      "input differential equation", 
      "Solving Nonstationary Heat-Conduction Problems", 
      "Nonstationary Heat-Conduction Problems"
    ], 
    "name": "On One Method of Solving Nonstationary Heat-Conduction Problems for Multilayer Structures", 
    "pagination": "225-230", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029846856"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10891-005-0052-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10891-005-0052-3", 
      "https://app.dimensions.ai/details/publication/pub.1029846856"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_404.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10891-005-0052-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10891-005-0052-3'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      56 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10891-005-0052-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb61905ac195b4d13b21a41fc8cc25fac
4 schema:datePublished 2005-03
5 schema:datePublishedReg 2005-03-01
6 schema:description As applied to the solution of the heat-conduction problem for a two-layer structure, the Fourier method is used jointly with the orthogonal Bubnov-Galerkin method. An important feature is the introduction of additional boundary conditions, the need for which is explained by the appearance of an additional parameter μ after the separation of the variables in the input differential equation. The additional boundary conditions are derived from the basic differential equation by differentiating it at the boundary points.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N846129061fa6485eaf57d158b2b98676
11 N8a50359c8d894e5eb0e83f47f75cf356
12 sg:journal.1313809
13 schema:keywords Bubnov-Galerkin method
14 Fourier methods
15 Nonstationary Heat-Conduction Problems
16 Solving Nonstationary Heat-Conduction Problems
17 additional boundary conditions
18 additional parameter μ
19 appearance
20 basic differential equations
21 boundary conditions
22 boundary points
23 conditions
24 differential equations
25 equations
26 features
27 heat-conduction problem
28 important features
29 input differential equation
30 introduction
31 method
32 multilayer structure
33 need
34 orthogonal Bubnov-Galerkin method
35 parameter μ
36 point
37 problem
38 separation
39 solution
40 structure
41 two-layer structure
42 variables
43 schema:name On One Method of Solving Nonstationary Heat-Conduction Problems for Multilayer Structures
44 schema:pagination 225-230
45 schema:productId Nac5794f10c0a4d9ebf45592cee15d2e7
46 Ne26d8d8e635c402fadc5dc0093d930d8
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029846856
48 https://doi.org/10.1007/s10891-005-0052-3
49 schema:sdDatePublished 2022-01-01T18:14
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nbda0b94c68b4476f8eeac65c5807f60b
52 schema:url https://doi.org/10.1007/s10891-005-0052-3
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1d6a18f3cabb417db7bcc58e99581275 rdf:first sg:person.012071441771.16
57 rdf:rest Nafd04f4035664158be9d3e977b956714
58 N846129061fa6485eaf57d158b2b98676 schema:volumeNumber 78
59 rdf:type schema:PublicationVolume
60 N8a50359c8d894e5eb0e83f47f75cf356 schema:issueNumber 2
61 rdf:type schema:PublicationIssue
62 Nac5794f10c0a4d9ebf45592cee15d2e7 schema:name doi
63 schema:value 10.1007/s10891-005-0052-3
64 rdf:type schema:PropertyValue
65 Nafd04f4035664158be9d3e977b956714 rdf:first sg:person.015130252601.62
66 rdf:rest Nea311ea6c424462e8d38b555829d97a6
67 Nb61905ac195b4d13b21a41fc8cc25fac rdf:first sg:person.014602635070.00
68 rdf:rest N1d6a18f3cabb417db7bcc58e99581275
69 Nbda0b94c68b4476f8eeac65c5807f60b schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ne26d8d8e635c402fadc5dc0093d930d8 schema:name dimensions_id
72 schema:value pub.1029846856
73 rdf:type schema:PropertyValue
74 Nea311ea6c424462e8d38b555829d97a6 rdf:first sg:person.010637046537.80
75 rdf:rest rdf:nil
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1313809 schema:issn 1062-0125
83 1573-871X
84 schema:name Journal of Engineering Physics and Thermophysics
85 schema:publisher Springer Nature
86 rdf:type schema:Periodical
87 sg:person.010637046537.80 schema:affiliation grid-institutes:grid.445792.9
88 schema:familyName Stefanyuk
89 schema:givenName E. V.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80
91 rdf:type schema:Person
92 sg:person.012071441771.16 schema:affiliation grid-institutes:grid.445792.9
93 schema:familyName Dikop
94 schema:givenName V. V.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071441771.16
96 rdf:type schema:Person
97 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
98 schema:familyName Kudinov
99 schema:givenName V. A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
101 rdf:type schema:Person
102 sg:person.015130252601.62 schema:affiliation grid-institutes:grid.445792.9
103 schema:familyName Nazarenko
104 schema:givenName S. A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130252601.62
106 rdf:type schema:Person
107 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia
108 schema:name Samara State Technical University, 244 Molodogvardeiskaya Str., 443100, Samara, Russia
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...