Rural structural change, poverty and income distribution: evidence from Peru View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Insa Flachsbarth, Simone Schotte, Jann Lay, Alberto Garrido

ABSTRACT

Some rural regions of Peru showed remarkable rates of poverty reduction and inequality reduction between 2004 and 2012, while others lagged behind. Using microsimulation-based decompositions, we analyse the driving forces behind these trends, finding that rural poverty and inequality reductions are mainly attributable to increasing labour incomes in Peru’s agricultural sector and, to a smaller extent, increasing public transfers. In earlier years, higher returns to experience drive these results, while in later years, increasing staple-crop yields and prices are of key importance. Further, remuneration of working hours increases in reaction to labour-supply shortages in rural areas. The accompanying rising incomes and non-agricultural job creation is less pro-poor than would be ideal, as they benefit more highly skilled workers. Further, shrinking farm sizes hampers poverty reduction and income-inequality reduction. Policies should target the participation of the poor in high-value (non-)agricultural activities, especially if positive trends in commodity prices are only transitory. More... »

PAGES

631-653

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10888-018-9392-z

DOI

http://dx.doi.org/10.1007/s10888-018-9392-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105805133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Department for Agricultural Economics and Rural Development, University of G\u00f6ttingen, RTG 1666 GlobalFood, Heinrich-D\u00fcker-Weg 12, 37073, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flachsbarth", 
        "givenName": "Insa", 
        "id": "sg:person.01233456020.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233456020.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GIGA German Institute of Global and Area Studies", 
          "id": "https://www.grid.ac/institutes/grid.435041.7", 
          "name": [
            "GIGA Institut f\u00fcr Afrika-Studien, Neuer Jungfernstieg 21, 20354, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schotte", 
        "givenName": "Simone", 
        "id": "sg:person.011155652265.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155652265.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GIGA German Institute of Global and Area Studies", 
          "id": "https://www.grid.ac/institutes/grid.435041.7", 
          "name": [
            "GIGA Institut f\u00fcr Afrika-Studien, Neuer Jungfernstieg 21, 20354, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lay", 
        "givenName": "Jann", 
        "id": "sg:person.012260573143.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012260573143.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "E.T.S. Ingenier\u00eda Agron\u00f3mica, Alimentaria y de Biosistemas, Avda. Complutense s/n, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garrido", 
        "givenName": "Alberto", 
        "id": "sg:person.015110441025.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110441025.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10888-005-9012-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001355836", 
          "https://doi.org/10.1007/s10888-005-9012-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10888-005-9012-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001355836", 
          "https://doi.org/10.1007/s10888-005-9012-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3878(91)90007-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003251305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-0862.2001.tb00051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005725622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-0862.2001.tb00051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005725622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-750x(00)00104-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006111413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-7679.2012.00585.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009459294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-750x(00)00110-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014029366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodpol.2013.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017312301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4067/s0717-68212005012500007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021162098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0913714108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021658475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-750x(00)00112-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022878866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/agec.12015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024369178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-750x(00)00113-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026111890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-6419.2007.00503.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031120380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-59429-7.00025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031716448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jdeveco.2010.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034923116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10888-007-9057-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040234792", 
          "https://doi.org/10.1007/s10888-007-9057-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00220389808422529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041583648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.worlddev.2007.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042160607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-9020-3-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046584678", 
          "https://doi.org/10.1186/2193-9020-3-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-5890.2000.tb00581.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046716503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.worlddev.2016.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048230184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-0335.2008.00735.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050782542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1355770x13000685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053920052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/261881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058575362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/380593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058672853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/wbro/lkp003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060065639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/wbro/lkp003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060065639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1911493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069639613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40503-016-0038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074248144", 
          "https://doi.org/10.1007/s40503-016-0038-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40503-016-0038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074248144", 
          "https://doi.org/10.1007/s40503-016-0038-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Some rural regions of Peru showed remarkable rates of poverty reduction and inequality reduction between 2004 and 2012, while others lagged behind. Using microsimulation-based decompositions, we analyse the driving forces behind these trends, finding that rural poverty and inequality reductions are mainly attributable to increasing labour incomes in Peru\u2019s agricultural sector and, to a smaller extent, increasing public transfers. In earlier years, higher returns to experience drive these results, while in later years, increasing staple-crop yields and prices are of key importance. Further, remuneration of working hours increases in reaction to labour-supply shortages in rural areas. The accompanying rising incomes and non-agricultural job creation is less pro-poor than would be ideal, as they benefit more highly skilled workers. Further, shrinking farm sizes hampers poverty reduction and income-inequality reduction. Policies should target the participation of the poor in high-value (non-)agricultural activities, especially if positive trends in commodity prices are only transitory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10888-018-9392-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050672", 
        "issn": [
          "1569-1721", 
          "1573-8701"
        ], 
        "name": "The Journal of Economic Inequality", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Rural structural change, poverty and income distribution: evidence from Peru", 
    "pagination": "631-653", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "306e29db8bf2ff11d53891b8e47b2f948dff263884ac5a5547f7a2f9baf52678"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10888-018-9392-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105805133"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10888-018-9392-z", 
      "https://app.dimensions.ai/details/publication/pub.1105805133"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000573.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10888-018-9392-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10888-018-9392-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10888-018-9392-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10888-018-9392-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10888-018-9392-z'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10888-018-9392-z schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N6a648a64f0f74fb0a7e7c2c0d875b09c
4 schema:citation sg:pub.10.1007/s10888-005-9012-6
5 sg:pub.10.1007/s10888-007-9057-9
6 sg:pub.10.1007/s40503-016-0038-x
7 sg:pub.10.1186/2193-9020-3-2
8 https://doi.org/10.1016/0304-3878(91)90007-i
9 https://doi.org/10.1016/b978-0-444-59429-7.00025-x
10 https://doi.org/10.1016/j.foodpol.2013.10.004
11 https://doi.org/10.1016/j.jdeveco.2010.10.006
12 https://doi.org/10.1016/j.worlddev.2007.05.002
13 https://doi.org/10.1016/j.worlddev.2016.03.005
14 https://doi.org/10.1016/s0305-750x(00)00104-2
15 https://doi.org/10.1016/s0305-750x(00)00110-8
16 https://doi.org/10.1016/s0305-750x(00)00112-1
17 https://doi.org/10.1016/s0305-750x(00)00113-3
18 https://doi.org/10.1017/s1355770x13000685
19 https://doi.org/10.1073/pnas.0913714108
20 https://doi.org/10.1080/00220389808422529
21 https://doi.org/10.1086/261881
22 https://doi.org/10.1086/380593
23 https://doi.org/10.1093/wbro/lkp003
24 https://doi.org/10.1111/agec.12015
25 https://doi.org/10.1111/j.1467-6419.2007.00503.x
26 https://doi.org/10.1111/j.1467-7679.2012.00585.x
27 https://doi.org/10.1111/j.1468-0335.2008.00735.x
28 https://doi.org/10.1111/j.1475-5890.2000.tb00581.x
29 https://doi.org/10.1111/j.1574-0862.2001.tb00051.x
30 https://doi.org/10.2307/1911493
31 https://doi.org/10.4067/s0717-68212005012500007
32 schema:datePublished 2018-12
33 schema:datePublishedReg 2018-12-01
34 schema:description Some rural regions of Peru showed remarkable rates of poverty reduction and inequality reduction between 2004 and 2012, while others lagged behind. Using microsimulation-based decompositions, we analyse the driving forces behind these trends, finding that rural poverty and inequality reductions are mainly attributable to increasing labour incomes in Peru’s agricultural sector and, to a smaller extent, increasing public transfers. In earlier years, higher returns to experience drive these results, while in later years, increasing staple-crop yields and prices are of key importance. Further, remuneration of working hours increases in reaction to labour-supply shortages in rural areas. The accompanying rising incomes and non-agricultural job creation is less pro-poor than would be ideal, as they benefit more highly skilled workers. Further, shrinking farm sizes hampers poverty reduction and income-inequality reduction. Policies should target the participation of the poor in high-value (non-)agricultural activities, especially if positive trends in commodity prices are only transitory.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N92690b6072804749b23c1190a1d1e8c2
39 Nd80d2dc5793b45ed8124a31e87ba5ec3
40 sg:journal.1050672
41 schema:name Rural structural change, poverty and income distribution: evidence from Peru
42 schema:pagination 631-653
43 schema:productId N36497698b63f42f58efd6548386b3d65
44 N6625fd115f3b43d9a746d4a81a07f447
45 N78794753390b4d64a2a7ef612373de8b
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105805133
47 https://doi.org/10.1007/s10888-018-9392-z
48 schema:sdDatePublished 2019-04-10T18:29
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ne9ad9f71681d40b392f226fb64fc58c3
51 schema:url https://link.springer.com/10.1007%2Fs10888-018-9392-z
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N36497698b63f42f58efd6548386b3d65 schema:name doi
56 schema:value 10.1007/s10888-018-9392-z
57 rdf:type schema:PropertyValue
58 N6625fd115f3b43d9a746d4a81a07f447 schema:name readcube_id
59 schema:value 306e29db8bf2ff11d53891b8e47b2f948dff263884ac5a5547f7a2f9baf52678
60 rdf:type schema:PropertyValue
61 N6a648a64f0f74fb0a7e7c2c0d875b09c rdf:first sg:person.01233456020.14
62 rdf:rest Nb25aaecd278742adb90b82593a90d4e5
63 N76f0330fb8f1405a82ca55b62fc48db9 schema:name E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Avda. Complutense s/n, 28040, Madrid, Spain
64 rdf:type schema:Organization
65 N78794753390b4d64a2a7ef612373de8b schema:name dimensions_id
66 schema:value pub.1105805133
67 rdf:type schema:PropertyValue
68 N92690b6072804749b23c1190a1d1e8c2 schema:volumeNumber 16
69 rdf:type schema:PublicationVolume
70 N9689a5ac506746939456723640754515 rdf:first sg:person.012260573143.93
71 rdf:rest Nc3a6147393b4443f83e01c1687834956
72 Nb25aaecd278742adb90b82593a90d4e5 rdf:first sg:person.011155652265.52
73 rdf:rest N9689a5ac506746939456723640754515
74 Nc3a6147393b4443f83e01c1687834956 rdf:first sg:person.015110441025.61
75 rdf:rest rdf:nil
76 Nd80d2dc5793b45ed8124a31e87ba5ec3 schema:issueNumber 4
77 rdf:type schema:PublicationIssue
78 Ne9ad9f71681d40b392f226fb64fc58c3 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
81 schema:name Economics
82 rdf:type schema:DefinedTerm
83 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
84 schema:name Applied Economics
85 rdf:type schema:DefinedTerm
86 sg:journal.1050672 schema:issn 1569-1721
87 1573-8701
88 schema:name The Journal of Economic Inequality
89 rdf:type schema:Periodical
90 sg:person.011155652265.52 schema:affiliation https://www.grid.ac/institutes/grid.435041.7
91 schema:familyName Schotte
92 schema:givenName Simone
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155652265.52
94 rdf:type schema:Person
95 sg:person.012260573143.93 schema:affiliation https://www.grid.ac/institutes/grid.435041.7
96 schema:familyName Lay
97 schema:givenName Jann
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012260573143.93
99 rdf:type schema:Person
100 sg:person.01233456020.14 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
101 schema:familyName Flachsbarth
102 schema:givenName Insa
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233456020.14
104 rdf:type schema:Person
105 sg:person.015110441025.61 schema:affiliation N76f0330fb8f1405a82ca55b62fc48db9
106 schema:familyName Garrido
107 schema:givenName Alberto
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110441025.61
109 rdf:type schema:Person
110 sg:pub.10.1007/s10888-005-9012-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001355836
111 https://doi.org/10.1007/s10888-005-9012-6
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10888-007-9057-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040234792
114 https://doi.org/10.1007/s10888-007-9057-9
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s40503-016-0038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1074248144
117 https://doi.org/10.1007/s40503-016-0038-x
118 rdf:type schema:CreativeWork
119 sg:pub.10.1186/2193-9020-3-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046584678
120 https://doi.org/10.1186/2193-9020-3-2
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0304-3878(91)90007-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1003251305
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/b978-0-444-59429-7.00025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031716448
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.foodpol.2013.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017312301
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jdeveco.2010.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034923116
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.worlddev.2007.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042160607
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.worlddev.2016.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048230184
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0305-750x(00)00104-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006111413
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0305-750x(00)00110-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014029366
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0305-750x(00)00112-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022878866
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0305-750x(00)00113-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026111890
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1017/s1355770x13000685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053920052
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.0913714108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021658475
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/00220389808422529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041583648
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1086/261881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058575362
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1086/380593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058672853
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1093/wbro/lkp003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060065639
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/agec.12015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024369178
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/j.1467-6419.2007.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031120380
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1467-7679.2012.00585.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009459294
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/j.1468-0335.2008.00735.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050782542
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/j.1475-5890.2000.tb00581.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046716503
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1574-0862.2001.tb00051.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005725622
165 rdf:type schema:CreativeWork
166 https://doi.org/10.2307/1911493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639613
167 rdf:type schema:CreativeWork
168 https://doi.org/10.4067/s0717-68212005012500007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021162098
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.435041.7 schema:alternateName GIGA German Institute of Global and Area Studies
171 schema:name GIGA Institut für Afrika-Studien, Neuer Jungfernstieg 21, 20354, Hamburg, Germany
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
174 schema:name Department for Agricultural Economics and Rural Development, University of Göttingen, RTG 1666 GlobalFood, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...