Gender inequalities in pensions: different components similar levels of dispersion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Carole Bonnet, Dominique Meurs, Benoît Rapoport

ABSTRACT

While the average gender gap in pensions is quite well documented, gender differences in the distribution of pensions have rarely been explored. We show in this paper that pension dispersion is very similar for men and women within the French pension system of a given sector (public or private). Gender differences are less marked among retired civil servants than among former private sector employees. However, the determinants of these inequalities are not the same for men and women. Using a regression-based decomposition of the Gini coefficient, we find that pension dispersion is mostly due to dispersion of the reference wage for all retirees but gender differences exist. For women, in particular, pension dispersion is also due to the dispersion in contribution periods. We also decompose the Gini coefficient by source of pension to measure the impact of institutional rules (minimum pensions, survivor’s pension) on the extent of pension inequality. Unexpectedly, we find that the impact of minimum pensions is limited, although slightly larger for civil servants than for private-sector employees. Survivor’s pension schemes, on the other hand, contribute positively to pension dispersion among retired women. More... »

PAGES

527-552

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10888-018-9379-9

DOI

http://dx.doi.org/10.1007/s10888-018-9379-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103676101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Business and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Demographic Studies", 
          "id": "https://www.grid.ac/institutes/grid.77048.3c", 
          "name": [
            "Institut National d\u2019Etudes D\u00e9mographiques (INED), 133 Boulevard Davout, 75020, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonnet", 
        "givenName": "Carole", 
        "id": "sg:person.015723117513.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723117513.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Demographic Studies", 
          "id": "https://www.grid.ac/institutes/grid.77048.3c", 
          "name": [
            "Institut National d\u2019Etudes D\u00e9mographiques (INED), 133 Boulevard Davout, 75020, Paris, France", 
            "University Paris Ouest Nanterre, Economix, 200 Avenue de la R\u00e9publique, 92001, Nanterre, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meurs", 
        "givenName": "Dominique", 
        "id": "sg:person.011664420171.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011664420171.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pantheon-Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.10988.38", 
          "name": [
            "Institut National d\u2019Etudes D\u00e9mographiques (INED), 133 Boulevard Davout, 75020, Paris, France", 
            "University Paris 1 - Panth\u00e9on Sorbonne, Centre d\u2019Economie de la Sorbonne UMR CNRS, Maison des Sciences Economiques, 106-112 Boulevard de l\u2019H\u00f4pital, 75647, Paris Cedex 13, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rapoport", 
        "givenName": "Beno\u00eet", 
        "id": "sg:person.014101360473.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014101360473.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-0-444-59428-0.00013-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016839587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3406/estat.2006.7116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020854723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10888-011-9207-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025104173", 
          "https://doi.org/10.1007/s10888-011-9207-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1026594695", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-4720-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026594695", 
          "https://doi.org/10.1007/978-1-4614-4720-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-4720-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026594695", 
          "https://doi.org/10.1007/978-1-4614-4720-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13545700903153963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028320553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1029621895", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1029621895", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10888-011-9214-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039082427", 
          "https://doi.org/10.1007/s10888-011-9214-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8586.2009.00336.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041605819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8586.2009.00336.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041605819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10888-011-9176-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042486595", 
          "https://doi.org/10.1007/s10888-011-9176-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1885088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069626139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1928447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069653330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2232987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069846711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2232987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069846711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3917/pope.1201.0123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071644254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3917/rdli.087.0035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071655695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3917/rfs.553.0459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071670824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0147-9121(03)22001-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084803674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/41615472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087268369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/146110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102717266"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "While the average gender gap in pensions is quite well documented, gender differences in the distribution of pensions have rarely been explored. We show in this paper that pension dispersion is very similar for men and women within the French pension system of a given sector (public or private). Gender differences are less marked among retired civil servants than among former private sector employees. However, the determinants of these inequalities are not the same for men and women. Using a regression-based decomposition of the Gini coefficient, we find that pension dispersion is mostly due to dispersion of the reference wage for all retirees but gender differences exist. For women, in particular, pension dispersion is also due to the dispersion in contribution periods. We also decompose the Gini coefficient by source of pension to measure the impact of institutional rules (minimum pensions, survivor\u2019s pension) on the extent of pension inequality. Unexpectedly, we find that the impact of minimum pensions is limited, although slightly larger for civil servants than for private-sector employees. Survivor\u2019s pension schemes, on the other hand, contribute positively to pension dispersion among retired women.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10888-018-9379-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050672", 
        "issn": [
          "1569-1721", 
          "1573-8701"
        ], 
        "name": "The Journal of Economic Inequality", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Gender inequalities in pensions: different components similar levels of dispersion", 
    "pagination": "527-552", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6c681e9ffcfefc74cf62827dbf0c952acfce172bfd5c05d28fb2ee1cf0b3bcd9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10888-018-9379-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103676101"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10888-018-9379-9", 
      "https://app.dimensions.ai/details/publication/pub.1103676101"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000573.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10888-018-9379-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10888-018-9379-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10888-018-9379-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10888-018-9379-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10888-018-9379-9'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10888-018-9379-9 schema:about anzsrc-for:15
2 anzsrc-for:1503
3 schema:author N13e9e8020208450cae21031d4ae3bffd
4 schema:citation sg:pub.10.1007/978-1-4614-4720-7
5 sg:pub.10.1007/s10888-011-9176-1
6 sg:pub.10.1007/s10888-011-9207-y
7 sg:pub.10.1007/s10888-011-9214-z
8 https://app.dimensions.ai/details/publication/pub.1026594695
9 https://app.dimensions.ai/details/publication/pub.1029621895
10 https://doi.org/10.1016/b978-0-444-59428-0.00013-8
11 https://doi.org/10.1016/s0147-9121(03)22001-x
12 https://doi.org/10.1080/13545700903153963
13 https://doi.org/10.1111/j.1467-8586.2009.00336.x
14 https://doi.org/10.2307/146110
15 https://doi.org/10.2307/1885088
16 https://doi.org/10.2307/1912537
17 https://doi.org/10.2307/1928447
18 https://doi.org/10.2307/2232987
19 https://doi.org/10.2307/41615472
20 https://doi.org/10.3406/estat.2006.7116
21 https://doi.org/10.3917/pope.1201.0123
22 https://doi.org/10.3917/rdli.087.0035
23 https://doi.org/10.3917/rfs.553.0459
24 schema:datePublished 2018-12
25 schema:datePublishedReg 2018-12-01
26 schema:description While the average gender gap in pensions is quite well documented, gender differences in the distribution of pensions have rarely been explored. We show in this paper that pension dispersion is very similar for men and women within the French pension system of a given sector (public or private). Gender differences are less marked among retired civil servants than among former private sector employees. However, the determinants of these inequalities are not the same for men and women. Using a regression-based decomposition of the Gini coefficient, we find that pension dispersion is mostly due to dispersion of the reference wage for all retirees but gender differences exist. For women, in particular, pension dispersion is also due to the dispersion in contribution periods. We also decompose the Gini coefficient by source of pension to measure the impact of institutional rules (minimum pensions, survivor’s pension) on the extent of pension inequality. Unexpectedly, we find that the impact of minimum pensions is limited, although slightly larger for civil servants than for private-sector employees. Survivor’s pension schemes, on the other hand, contribute positively to pension dispersion among retired women.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N931a6b8b8eb4495bb8bb747cfdd33ec0
31 Nd42ce82ad9244a009f9252c8566f923e
32 sg:journal.1050672
33 schema:name Gender inequalities in pensions: different components similar levels of dispersion
34 schema:pagination 527-552
35 schema:productId N3327b56e3b7145738efa3ccb4f0c2460
36 Nc47a7578303a4db69786f37aa242842c
37 Nddea69745363422b93f4015253615738
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103676101
39 https://doi.org/10.1007/s10888-018-9379-9
40 schema:sdDatePublished 2019-04-10T19:18
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N76f3fa637de14c2db3f70c8c203f4f16
43 schema:url https://link.springer.com/10.1007%2Fs10888-018-9379-9
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N13e9e8020208450cae21031d4ae3bffd rdf:first sg:person.015723117513.84
48 rdf:rest N4da914ac81644e9d9f476877eace1127
49 N3327b56e3b7145738efa3ccb4f0c2460 schema:name doi
50 schema:value 10.1007/s10888-018-9379-9
51 rdf:type schema:PropertyValue
52 N4da914ac81644e9d9f476877eace1127 rdf:first sg:person.011664420171.29
53 rdf:rest Nc7987456489f4eb29f5ac1048f578839
54 N76f3fa637de14c2db3f70c8c203f4f16 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N931a6b8b8eb4495bb8bb747cfdd33ec0 schema:volumeNumber 16
57 rdf:type schema:PublicationVolume
58 Nc47a7578303a4db69786f37aa242842c schema:name readcube_id
59 schema:value 6c681e9ffcfefc74cf62827dbf0c952acfce172bfd5c05d28fb2ee1cf0b3bcd9
60 rdf:type schema:PropertyValue
61 Nc7987456489f4eb29f5ac1048f578839 rdf:first sg:person.014101360473.30
62 rdf:rest rdf:nil
63 Nd42ce82ad9244a009f9252c8566f923e schema:issueNumber 4
64 rdf:type schema:PublicationIssue
65 Nddea69745363422b93f4015253615738 schema:name dimensions_id
66 schema:value pub.1103676101
67 rdf:type schema:PropertyValue
68 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
69 schema:name Commerce, Management, Tourism and Services
70 rdf:type schema:DefinedTerm
71 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
72 schema:name Business and Management
73 rdf:type schema:DefinedTerm
74 sg:journal.1050672 schema:issn 1569-1721
75 1573-8701
76 schema:name The Journal of Economic Inequality
77 rdf:type schema:Periodical
78 sg:person.011664420171.29 schema:affiliation https://www.grid.ac/institutes/grid.77048.3c
79 schema:familyName Meurs
80 schema:givenName Dominique
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011664420171.29
82 rdf:type schema:Person
83 sg:person.014101360473.30 schema:affiliation https://www.grid.ac/institutes/grid.10988.38
84 schema:familyName Rapoport
85 schema:givenName Benoît
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014101360473.30
87 rdf:type schema:Person
88 sg:person.015723117513.84 schema:affiliation https://www.grid.ac/institutes/grid.77048.3c
89 schema:familyName Bonnet
90 schema:givenName Carole
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723117513.84
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4614-4720-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026594695
94 https://doi.org/10.1007/978-1-4614-4720-7
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10888-011-9176-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042486595
97 https://doi.org/10.1007/s10888-011-9176-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10888-011-9207-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025104173
100 https://doi.org/10.1007/s10888-011-9207-y
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10888-011-9214-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039082427
103 https://doi.org/10.1007/s10888-011-9214-z
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1026594695 schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1029621895 schema:CreativeWork
107 https://doi.org/10.1016/b978-0-444-59428-0.00013-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016839587
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0147-9121(03)22001-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084803674
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1080/13545700903153963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028320553
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1111/j.1467-8586.2009.00336.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041605819
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2307/146110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102717266
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2307/1885088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069626139
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2307/1912537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640168
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2307/1928447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069653330
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2307/2232987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069846711
124 rdf:type schema:CreativeWork
125 https://doi.org/10.2307/41615472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087268369
126 rdf:type schema:CreativeWork
127 https://doi.org/10.3406/estat.2006.7116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020854723
128 rdf:type schema:CreativeWork
129 https://doi.org/10.3917/pope.1201.0123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071644254
130 rdf:type schema:CreativeWork
131 https://doi.org/10.3917/rdli.087.0035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071655695
132 rdf:type schema:CreativeWork
133 https://doi.org/10.3917/rfs.553.0459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071670824
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.10988.38 schema:alternateName Pantheon-Sorbonne University
136 schema:name Institut National d’Etudes Démographiques (INED), 133 Boulevard Davout, 75020, Paris, France
137 University Paris 1 - Panthéon Sorbonne, Centre d’Economie de la Sorbonne UMR CNRS, Maison des Sciences Economiques, 106-112 Boulevard de l’Hôpital, 75647, Paris Cedex 13, France
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.77048.3c schema:alternateName National Institute for Demographic Studies
140 schema:name Institut National d’Etudes Démographiques (INED), 133 Boulevard Davout, 75020, Paris, France
141 University Paris Ouest Nanterre, Economix, 200 Avenue de la République, 92001, Nanterre, France
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...