Nutrient Supply and Simulated Herbivory Differentially Alter the Metabolite Pools and the Efficacy of the Glucosinolate-Based Defense System in Brassica ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-03

AUTHORS

Makhdora Almuziny, Charlotte Decker, Dong Wang, Patrick Gerard, Nishanth Tharayil

ABSTRACT

Environmental stress hinders growth of plants and commonly results in the accumulation of carbon-based defense compounds. However, the dynamics of nitrogen (N)-containing defense compounds are less predictable under environmental stress. The impact of nutrient deficiency on plant defenses that require the metabolic conversion of a less toxic compound to a more potent toxin is even more poorly understood. We evaluated the effects of nitrogen (N) and potassium (K) deficiency and simulated herbivory on the concentration of metabolites including glucosinolates (GSLs), on the conversion of GSLs to more toxic isothiocyanates (ITCs), and on the activity of myrosinase (MYR) in leaves of Brassica juncea and Brassica nigra. Both species contained GSLs, predominantly sinigrin, but also derivatives of glucobrassicin. Compared to the control, N deficiency increased the sinigrin concentration in both species. Methyl jasmonate (MeJA) application increased sinigrin production in B. junceae, whereas in B. nigra MeJA increased sinigrin only under K-deficiency. Compared to the aliphatic-glucosinolates, MeJA application produced a greater compositional change in the profiles of indolic-glucosinolates. In both species the increase in sinigrin content of the tissue was associated with a decrease in its overall nutritive value as assessed by the content of sugars and amino acids. In B. juncea, application of MeJA decreased the conversion of sinigrin to allyl isothiocyanate (AITC) under both N and K deficiency. The potential activity of MYR decreased in both species under N deficiency. The reduced conversion of sinigrin to AITC and the lower activity of MYR suggest that the GSL-ITC defense system might have a limited efficiency in deterring generalist herbivores under environmental stress. More... »

PAGES

129-142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10886-016-0811-y

DOI

http://dx.doi.org/10.1007/s10886-016-0811-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001512668

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28050732


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acetates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cyclopentanes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucosinolates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycoside Hydrolases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Herbivory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mustard Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxylipins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Leaves", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Potassium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Physiological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Plant and Environmental Science, Clemson University, 120 BRC, 105 Collins Street, 29634, Clemson, SC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26090.3d", 
          "name": [
            "Department of Plant and Environmental Science, Clemson University, 120 BRC, 105 Collins Street, 29634, Clemson, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Almuziny", 
        "givenName": "Makhdora", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Plant and Environmental Science, Clemson University, 120 BRC, 105 Collins Street, 29634, Clemson, SC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26090.3d", 
          "name": [
            "Department of Plant and Environmental Science, Clemson University, 120 BRC, 105 Collins Street, 29634, Clemson, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decker", 
        "givenName": "Charlotte", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USDA Agricultural Research Service, Water Management Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, 93648, Parlier, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.512850.b", 
          "name": [
            "USDA Agricultural Research Service, Water Management Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, 93648, Parlier, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Dong", 
        "id": "sg:person.01075530624.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075530624.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Clemson University, 29634, Clemson, SC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26090.3d", 
          "name": [
            "Department of Mathematical Sciences, Clemson University, 29634, Clemson, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerard", 
        "givenName": "Patrick", 
        "id": "sg:person.0644130544.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644130544.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Plant and Environmental Science, Clemson University, 120 BRC, 105 Collins Street, 29634, Clemson, SC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26090.3d", 
          "name": [
            "Department of Plant and Environmental Science, Clemson University, 120 BRC, 105 Collins Street, 29634, Clemson, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tharayil", 
        "givenName": "Nishanth", 
        "id": "sg:person.01107406507.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107406507.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11101-008-9113-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047234551", 
          "https://doi.org/10.1007/s11101-008-9113-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-010-0520-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012342896", 
          "https://doi.org/10.1007/s11104-010-0520-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep21060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034185502", 
          "https://doi.org/10.1038/srep21060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-10-172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044277414", 
          "https://doi.org/10.1186/1471-2229-10-172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00049-006-0347-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049780334", 
          "https://doi.org/10.1007/s00049-006-0347-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11101-008-9117-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037779248", 
          "https://doi.org/10.1007/s11101-008-9117-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-12-127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045161416", 
          "https://doi.org/10.1186/1471-2148-12-127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10682-010-9443-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050878866", 
          "https://doi.org/10.1007/s10682-010-9443-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-03", 
    "datePublishedReg": "2017-01-03", 
    "description": "Environmental stress hinders growth of plants and commonly results in the accumulation of carbon-based defense compounds. However, the dynamics of nitrogen (N)-containing defense compounds are less predictable under environmental stress. The impact of nutrient deficiency on plant defenses that require the metabolic conversion of a less toxic compound to a more potent toxin is even more poorly understood. We evaluated the effects of nitrogen (N) and potassium (K) deficiency and simulated herbivory on the concentration of metabolites including glucosinolates (GSLs), on the conversion of GSLs to more toxic isothiocyanates (ITCs), and on the activity of myrosinase (MYR) in leaves of Brassica juncea and Brassica nigra. Both species contained GSLs, predominantly sinigrin, but also derivatives of glucobrassicin. Compared to the control, N deficiency increased the sinigrin concentration in both species. Methyl jasmonate (MeJA) application increased sinigrin production in B. junceae, whereas in B. nigra MeJA increased sinigrin only under K-deficiency. Compared to the aliphatic-glucosinolates, MeJA application produced a greater compositional change in the profiles of indolic-glucosinolates. In both species the increase in sinigrin content of the tissue was associated with a decrease in its overall nutritive value as assessed by the content of sugars and amino acids. In B. juncea, application of MeJA decreased the conversion of sinigrin to allyl isothiocyanate (AITC) under both N and K deficiency. The potential activity of MYR decreased in both species under N deficiency. The reduced conversion of sinigrin to AITC and the lower activity of MYR suggest that the GSL-ITC defense system might have a limited efficiency in deterring generalist herbivores under environmental stress.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10886-016-0811-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1082730", 
        "issn": [
          "0098-0331", 
          "1573-1561"
        ], 
        "name": "Journal of Chemical Ecology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "environmental stress", 
      "defense compounds", 
      "K deficiency", 
      "carbon-based defence compounds", 
      "overall nutritive value", 
      "growth of plants", 
      "effect of nitrogen", 
      "dynamics of nitrogen", 
      "methyl jasmonate application", 
      "greater compositional changes", 
      "conversion of glucosinolates", 
      "allyl isothiocyanate", 
      "content of sugars", 
      "application of MeJA", 
      "defense system", 
      "B. juncea", 
      "N deficiency", 
      "Brassica species", 
      "Brassica juncea", 
      "toxic isothiocyanates", 
      "plant defense", 
      "nutrient deficiency", 
      "generalist herbivores", 
      "nutritive value", 
      "simulated herbivory", 
      "sinigrin content", 
      "potassium deficiency", 
      "Brassica nigra", 
      "nutrient supply", 
      "MeJA application", 
      "activity of myrosinase", 
      "jasmonate application", 
      "sinigrin concentration", 
      "glucosinolates", 
      "metabolite pools", 
      "juncea", 
      "amino acids", 
      "species", 
      "herbivory", 
      "potent toxins", 
      "MeJA", 
      "sinigrin", 
      "toxic compounds", 
      "myrosinase", 
      "nitrogen", 
      "metabolic conversion", 
      "concentrations of metabolites", 
      "herbivores", 
      "reduced conversion", 
      "compositional changes", 
      "stress", 
      "potential activity", 
      "plants", 
      "low activity", 
      "leaves", 
      "content", 
      "production", 
      "glucobrassicin", 
      "deficiency", 
      "activity", 
      "isothiocyanate", 
      "supply", 
      "growth", 
      "defense", 
      "sugars", 
      "accumulation", 
      "toxin", 
      "pool", 
      "metabolites", 
      "tissue", 
      "compounds", 
      "acid", 
      "applications", 
      "conversion", 
      "concentration", 
      "impact", 
      "efficiency", 
      "control", 
      "dynamics", 
      "nigra", 
      "increase", 
      "system", 
      "effect", 
      "changes", 
      "profile", 
      "values", 
      "decrease", 
      "efficacy", 
      "derivatives", 
      "results"
    ], 
    "name": "Nutrient Supply and Simulated Herbivory Differentially Alter the Metabolite Pools and the Efficacy of the Glucosinolate-Based Defense System in Brassica Species", 
    "pagination": "129-142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001512668"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10886-016-0811-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28050732"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10886-016-0811-y", 
      "https://app.dimensions.ai/details/publication/pub.1001512668"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_745.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10886-016-0811-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10886-016-0811-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10886-016-0811-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10886-016-0811-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10886-016-0811-y'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      22 PREDICATES      136 URIs      120 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10886-016-0811-y schema:about N1013eee48a7a4ea78a2f1b2f9769caf8
2 N2c5f8a8720eb468c9b06006fdba3b78c
3 N3a493447deaa4492bf092ab676d1893b
4 N3c1771d3a20f45c6a15d64e1ab48ec25
5 N56c6d50c96084b449a28c62f30b46a16
6 N80c0e62fb4024bca8851c32ad8d6fcae
7 Naa6f4e550dc04de187d0a73fda0fd548
8 Nabe7d081f8574068b7f16b27930a2b24
9 Nb5a8da728245446da245153f13c2ce07
10 Nc40a3560427844de85be95112f6e8fe6
11 Nc9e47cce73334dd3bc9799bf6297f776
12 Ne42ed6d49de74088b5f782cfee080b1b
13 anzsrc-for:06
14 anzsrc-for:0607
15 schema:author N57c1de3c57d4442da027fd76b360d3cd
16 schema:citation sg:pub.10.1007/s00049-006-0347-7
17 sg:pub.10.1007/s10682-010-9443-9
18 sg:pub.10.1007/s11101-008-9113-5
19 sg:pub.10.1007/s11101-008-9117-1
20 sg:pub.10.1007/s11104-010-0520-1
21 sg:pub.10.1038/srep21060
22 sg:pub.10.1186/1471-2148-12-127
23 sg:pub.10.1186/1471-2229-10-172
24 schema:datePublished 2017-01-03
25 schema:datePublishedReg 2017-01-03
26 schema:description Environmental stress hinders growth of plants and commonly results in the accumulation of carbon-based defense compounds. However, the dynamics of nitrogen (N)-containing defense compounds are less predictable under environmental stress. The impact of nutrient deficiency on plant defenses that require the metabolic conversion of a less toxic compound to a more potent toxin is even more poorly understood. We evaluated the effects of nitrogen (N) and potassium (K) deficiency and simulated herbivory on the concentration of metabolites including glucosinolates (GSLs), on the conversion of GSLs to more toxic isothiocyanates (ITCs), and on the activity of myrosinase (MYR) in leaves of Brassica juncea and Brassica nigra. Both species contained GSLs, predominantly sinigrin, but also derivatives of glucobrassicin. Compared to the control, N deficiency increased the sinigrin concentration in both species. Methyl jasmonate (MeJA) application increased sinigrin production in B. junceae, whereas in B. nigra MeJA increased sinigrin only under K-deficiency. Compared to the aliphatic-glucosinolates, MeJA application produced a greater compositional change in the profiles of indolic-glucosinolates. In both species the increase in sinigrin content of the tissue was associated with a decrease in its overall nutritive value as assessed by the content of sugars and amino acids. In B. juncea, application of MeJA decreased the conversion of sinigrin to allyl isothiocyanate (AITC) under both N and K deficiency. The potential activity of MYR decreased in both species under N deficiency. The reduced conversion of sinigrin to AITC and the lower activity of MYR suggest that the GSL-ITC defense system might have a limited efficiency in deterring generalist herbivores under environmental stress.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N417c639b07d1451594962f1d474a629c
31 N4e344a917a25423eb70b98921855e08e
32 sg:journal.1082730
33 schema:keywords B. juncea
34 Brassica juncea
35 Brassica nigra
36 Brassica species
37 K deficiency
38 MeJA
39 MeJA application
40 N deficiency
41 accumulation
42 acid
43 activity
44 activity of myrosinase
45 allyl isothiocyanate
46 amino acids
47 application of MeJA
48 applications
49 carbon-based defence compounds
50 changes
51 compositional changes
52 compounds
53 concentration
54 concentrations of metabolites
55 content
56 content of sugars
57 control
58 conversion
59 conversion of glucosinolates
60 decrease
61 defense
62 defense compounds
63 defense system
64 deficiency
65 derivatives
66 dynamics
67 dynamics of nitrogen
68 effect
69 effect of nitrogen
70 efficacy
71 efficiency
72 environmental stress
73 generalist herbivores
74 glucobrassicin
75 glucosinolates
76 greater compositional changes
77 growth
78 growth of plants
79 herbivores
80 herbivory
81 impact
82 increase
83 isothiocyanate
84 jasmonate application
85 juncea
86 leaves
87 low activity
88 metabolic conversion
89 metabolite pools
90 metabolites
91 methyl jasmonate application
92 myrosinase
93 nigra
94 nitrogen
95 nutrient deficiency
96 nutrient supply
97 nutritive value
98 overall nutritive value
99 plant defense
100 plants
101 pool
102 potassium deficiency
103 potent toxins
104 potential activity
105 production
106 profile
107 reduced conversion
108 results
109 simulated herbivory
110 sinigrin
111 sinigrin concentration
112 sinigrin content
113 species
114 stress
115 sugars
116 supply
117 system
118 tissue
119 toxic compounds
120 toxic isothiocyanates
121 toxin
122 values
123 schema:name Nutrient Supply and Simulated Herbivory Differentially Alter the Metabolite Pools and the Efficacy of the Glucosinolate-Based Defense System in Brassica Species
124 schema:pagination 129-142
125 schema:productId N12146714b88c4fa0b861fdcb4f3e6027
126 Nec2830693198447586023083ca1e42e8
127 Nf0b79c84cf10476e83fd9bb6aeef22b6
128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001512668
129 https://doi.org/10.1007/s10886-016-0811-y
130 schema:sdDatePublished 2022-05-20T07:33
131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
132 schema:sdPublisher N518273f794cf4dc5b60cef086bd03fbd
133 schema:url https://doi.org/10.1007/s10886-016-0811-y
134 sgo:license sg:explorer/license/
135 sgo:sdDataset articles
136 rdf:type schema:ScholarlyArticle
137 N1013eee48a7a4ea78a2f1b2f9769caf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Oxylipins
139 rdf:type schema:DefinedTerm
140 N12146714b88c4fa0b861fdcb4f3e6027 schema:name doi
141 schema:value 10.1007/s10886-016-0811-y
142 rdf:type schema:PropertyValue
143 N15bd6c49b72f417188f364810a71bd5c rdf:first sg:person.01075530624.37
144 rdf:rest N1c8d8360ea55486c836486a436bd8218
145 N1c8d8360ea55486c836486a436bd8218 rdf:first sg:person.0644130544.49
146 rdf:rest N7ed983e28b4347a29c9a5d1cbb989eaa
147 N221472b6bb3f494a92ee6d040bb24d36 rdf:first N9e92972a2841400887708c8532bea16d
148 rdf:rest N15bd6c49b72f417188f364810a71bd5c
149 N2c5f8a8720eb468c9b06006fdba3b78c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Stress, Physiological
151 rdf:type schema:DefinedTerm
152 N3a493447deaa4492bf092ab676d1893b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Plant Leaves
154 rdf:type schema:DefinedTerm
155 N3c1771d3a20f45c6a15d64e1ab48ec25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Glucosinolates
157 rdf:type schema:DefinedTerm
158 N417c639b07d1451594962f1d474a629c schema:volumeNumber 43
159 rdf:type schema:PublicationVolume
160 N4e344a917a25423eb70b98921855e08e schema:issueNumber 2
161 rdf:type schema:PublicationIssue
162 N518273f794cf4dc5b60cef086bd03fbd schema:name Springer Nature - SN SciGraph project
163 rdf:type schema:Organization
164 N56c6d50c96084b449a28c62f30b46a16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Nitrogen
166 rdf:type schema:DefinedTerm
167 N57c1de3c57d4442da027fd76b360d3cd rdf:first Ncc36f08387f74f57a33b6b549ecb3e63
168 rdf:rest N221472b6bb3f494a92ee6d040bb24d36
169 N7ed983e28b4347a29c9a5d1cbb989eaa rdf:first sg:person.01107406507.28
170 rdf:rest rdf:nil
171 N80c0e62fb4024bca8851c32ad8d6fcae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Acetates
173 rdf:type schema:DefinedTerm
174 N9e92972a2841400887708c8532bea16d schema:affiliation grid-institutes:grid.26090.3d
175 schema:familyName Decker
176 schema:givenName Charlotte
177 rdf:type schema:Person
178 Naa6f4e550dc04de187d0a73fda0fd548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Mustard Plant
180 rdf:type schema:DefinedTerm
181 Nabe7d081f8574068b7f16b27930a2b24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Potassium
183 rdf:type schema:DefinedTerm
184 Nb5a8da728245446da245153f13c2ce07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Models, Biological
186 rdf:type schema:DefinedTerm
187 Nc40a3560427844de85be95112f6e8fe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Cyclopentanes
189 rdf:type schema:DefinedTerm
190 Nc9e47cce73334dd3bc9799bf6297f776 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Herbivory
192 rdf:type schema:DefinedTerm
193 Ncc36f08387f74f57a33b6b549ecb3e63 schema:affiliation grid-institutes:grid.26090.3d
194 schema:familyName Almuziny
195 schema:givenName Makhdora
196 rdf:type schema:Person
197 Ne42ed6d49de74088b5f782cfee080b1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Glycoside Hydrolases
199 rdf:type schema:DefinedTerm
200 Nec2830693198447586023083ca1e42e8 schema:name dimensions_id
201 schema:value pub.1001512668
202 rdf:type schema:PropertyValue
203 Nf0b79c84cf10476e83fd9bb6aeef22b6 schema:name pubmed_id
204 schema:value 28050732
205 rdf:type schema:PropertyValue
206 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
207 schema:name Biological Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
210 schema:name Plant Biology
211 rdf:type schema:DefinedTerm
212 sg:journal.1082730 schema:issn 0098-0331
213 1573-1561
214 schema:name Journal of Chemical Ecology
215 schema:publisher Springer Nature
216 rdf:type schema:Periodical
217 sg:person.01075530624.37 schema:affiliation grid-institutes:grid.512850.b
218 schema:familyName Wang
219 schema:givenName Dong
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075530624.37
221 rdf:type schema:Person
222 sg:person.01107406507.28 schema:affiliation grid-institutes:grid.26090.3d
223 schema:familyName Tharayil
224 schema:givenName Nishanth
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107406507.28
226 rdf:type schema:Person
227 sg:person.0644130544.49 schema:affiliation grid-institutes:grid.26090.3d
228 schema:familyName Gerard
229 schema:givenName Patrick
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644130544.49
231 rdf:type schema:Person
232 sg:pub.10.1007/s00049-006-0347-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049780334
233 https://doi.org/10.1007/s00049-006-0347-7
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s10682-010-9443-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050878866
236 https://doi.org/10.1007/s10682-010-9443-9
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/s11101-008-9113-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047234551
239 https://doi.org/10.1007/s11101-008-9113-5
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/s11101-008-9117-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037779248
242 https://doi.org/10.1007/s11101-008-9117-1
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s11104-010-0520-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012342896
245 https://doi.org/10.1007/s11104-010-0520-1
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/srep21060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034185502
248 https://doi.org/10.1038/srep21060
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1471-2148-12-127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045161416
251 https://doi.org/10.1186/1471-2148-12-127
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2229-10-172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044277414
254 https://doi.org/10.1186/1471-2229-10-172
255 rdf:type schema:CreativeWork
256 grid-institutes:grid.26090.3d schema:alternateName Department of Mathematical Sciences, Clemson University, 29634, Clemson, SC, USA
257 Department of Plant and Environmental Science, Clemson University, 120 BRC, 105 Collins Street, 29634, Clemson, SC, USA
258 schema:name Department of Mathematical Sciences, Clemson University, 29634, Clemson, SC, USA
259 Department of Plant and Environmental Science, Clemson University, 120 BRC, 105 Collins Street, 29634, Clemson, SC, USA
260 rdf:type schema:Organization
261 grid-institutes:grid.512850.b schema:alternateName USDA Agricultural Research Service, Water Management Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, 93648, Parlier, CA, USA
262 schema:name USDA Agricultural Research Service, Water Management Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, 93648, Parlier, CA, USA
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...